首页|信息量法耦合机器学习模型的西山煤田滑坡易发性评价

信息量法耦合机器学习模型的西山煤田滑坡易发性评价

扫码查看
采煤活动形成的地下采空区极易引发地质灾害,滑坡易发性评价是地质灾害风险预警的先行工作.以山西省西山煤田为研究区,构建了 20个滑坡致灾因子,利用信息量(Information Value,Ⅳ)法耦合逻辑回归(Logistic Regression,LR)、随机森林(Random Forest,RF)和支持向量机(Support Vector Machine,SVM)模型,构建 Ⅳ-LR、Ⅳ-RF和Ⅳ-SVM这3种Ⅳ法耦合机器学习模型,并进行研究区滑坡易发性评价,通过受试者工作特征(Receiver Operating Characteristic,ROC)曲线、均值和标准差分析建模结果精度.结果表明,研究区内高、极高易发区主要分布在距水系300 m内,极低、低易发区分布在中西部地区,Ⅳ-LR、Ⅳ-RF和Ⅳ-SVM模型验证精度分别为76.67%、74.62%和78.57%,ROC曲线下面积(Area Under Curve,AUC)为0.86、0.83和0.84.Ⅳ-LR模型AUC值最大,预测精度最高.
Evaluation of Landslide Susceptibility in Xishan Coalfield Based on Information Value Method Coupled with Machine Learning Model
The underground goaf formed by coal mining activities are highly susceptible to geological disasters,and landslide susceptibility evaluation is a prior work for geological disaster risk warning.Taking Xishan Coalfield in Shanxi province as the study area,20 landslide disaster-causing factors are constructed,while three coupled machine learning models of Ⅳ-LR,Ⅳ-RF and Ⅳ-SVM are constructed by using Information Value(Ⅳ)method coupled with Logistic Regression(LR),Random Forest(RF)and Support Vector Machine(SVM)models,and then,landslide susceptibility evaluation is conducted in the study area by using Receiver Operating Characteristic(ROC)curve,mean and standard deviation to analyze the accuracy of modeling results.Results show that the high and extremely high susceptibility areas in the study area are mainly distributed within 300 m of the water system,while the extremely low and low susceptibility areas are distributed in the central and western regions.The verification accuracy of Ⅳ-LR,Ⅳ-RF,and Ⅳ-SVM models are 76.67%,74.62%,and 78.57%,respectively,and Area Under Curve(AUC)of the ROC are 0.86,0.83,and 0.84,respectively.The Ⅳ-LR model has the highest AUC value and the highest prediction accuracy.

landslide susceptibilityXishan CoalfieldIV methodmachine learning model

李凯新、苏巧梅、张潇远、范锦龙、白东升

展开 >

太原理工大学矿业工程学院,山西太原 030024

国家卫星气象中心,北京 100081

山西地质集团有限公司,山西太原 030006

滑坡易发性 西山煤田 信息量法 机器学习模型

国家自然科学基金面上项目国家自然科学基金面上项目

4217142442271432

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(2)
  • 22