首页|一种改进TransUNet的高分辨率遥感影像滑坡提取方法

一种改进TransUNet的高分辨率遥感影像滑坡提取方法

扫码查看
遥感影像滑坡识别方法对于抢险应急指挥具有重要意义.TransUNet模型由于架构中的注意力机制计算复杂度高,且跳跃连接无法实现相邻特征图之间的对齐,导致模型训练时间长,无法有效利用浅层高分辨率特征信息.针对上述问题,对TransUNet模型架构进行了改进,提出一种改进的流对齐TransUNet(Flow Alignment TransUNet,FATransUNet)模型.将原始结构中的Transformer模块替换为Efficient Transformer模块,有效降低模型的计算复杂度.引入流对齐模块(Flow Alignment Module,FAM),替换原始的跳跃连接、特征拼接和解码阶段中的上采样操作,既能够简化运算过程,又有效融合了浅层中的高分辨率信息.基于开源的毕节滑坡数据集实验表明,FATransUNet模型的F1评分和mIoU分别达到了91.4%和91.1%,均高于其他5种模型(FCN、U-Net、SegNet、DeepLabV3+、TransUNet)的精度,有效抑制了复杂背景对滑坡提取的干扰,提升了高分辨率遥感影像中滑坡的提取精度.
An Improved TransUNet Landslide Extraction Method for High-resolution Remote Sensing Images
Remote sensing image landslide identification method is of great significance for emergency command.The TransUNet model has high computational complexity due to the attention mechanism in its architecture,and the skip connection cannot achieve alignment between adjacent feature maps,resulting in long model training time and inability to effectively utilize shallow layer high-resolution feature information.To solve the above problems,the TransUNet model architecture is improved and an improved Flow Alignment TransUNet(FATransUNet)model is proposed.Firstly,the Transformer module in the original structure is replaced by an Efficient Transformer module,which effectively reduces the computational complexity of the model.Secondly,a Flow Alignment Module(FAM)is introduced to replace the up-sampling operation in the original skip connection,feature splicing and decoding stages,which not only simplifies the operation process,but also effectively integrates the high-resolution information in the shallow layer.Experiments based on the open source Bijie landslide dataset show that the F1 score and mIoU of the FATransUNet model reach 91.4%and 91.1%,respectively,which are higher than the accuracy of other five models(FCN,U-Net,SegNet,DeepLabV3+and TransUNet).The interference of complex background on landslide extraction is effectively suppressed,and the extraction accuracy of landslides in high-resolution remote sensing images is improved.

deep learninglandslide extractionFATransUNetBijie landslide data

胡富杰、吕伟才、周福阳、郭晓慧、卢福康

展开 >

安徽理工大学空间信息与测绘工程学院,安徽淮南 232001

安徽理工大学矿区环境与灾害协同监测煤炭行业工程研究中心,安徽淮南 232001

安徽理工大学矿山采动灾害空天地协同监测与预警安徽普通高校重点实验室,安徽淮南 232001

东华理工大学测绘与空间信息工程学院,江西南昌 330013

展开 >

深度学习 滑坡提取 流对齐TransUNet 毕节滑坡数据

安徽省自然科学基金安徽省科技重大科技专项

2008085MD114202103a05020026

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(2)
  • 8