首页|基于多尺度YOLOv5的交通标志检测

基于多尺度YOLOv5的交通标志检测

扫码查看
针对小目标交通标志检测存在的检测精度低、漏检率高等问题,提出了一种基于多尺度融合的YOLOv5改进算法.在主干网络后输出4个有效特征层以便更好地融合多尺度信息,在主干网络输出的3个特征层中添加改进的多尺度融合注意力机制CBAM_U,以提升网络的检测能力;在Path Aggregation Network(PANet)下采样过程中添加Fusion模块,促进不同感受野下特征的细融合;在YOLOHand前加入Adaptively Spatial Feature Fusion(ASFF)模块解决特征金字塔融合的不一致性,进一步提升网络的表达能力.实验结果表明,提出的方法相比于原始YOLOv5网络在CCTSDB数据集中mAP@0.5提升了 3.07%,召回率提升了 3.83%,查准率提升了 1.64%,F1-Score提升了 2.66%,相比于其他检测算法,改进后的YOLOv5算法在复杂场景中具有更好的鲁棒性.
Traffic Sign Detection Based on Multi-scale YOLOv5
A YOLOv5 algorithm based on multi-scale fusion is proposed to address the problems of low detection accuracy and high missed detection rate of small object traffic sign detection.Four effective feature layers are output after the backbone network for better fusion of multi-scale information,and an improved multi-scale fusion attention mechanism CBAM_U is added to the three feature layers output from the backbone network to improve the detection capability of the network,followed by the addition of the Fusion module in the process of Path Aggregation Network(PANet)down-sampling to promote the fine fusion of features under different perceptual fields,the Adaptively Spatial Feature Fusion(ASFF)module is added before YOLOHead to address the inconsistency of feature pyramid fusion and further enhance the expression ability of the network.The experimental results show that the mAP@0.5 is improved by 3.07%,the recall rate by 3.83%,the accuracy by 1.64%,and F1-Score by 2.66%over the original YOLOv5 network on CCTSDB dataset,and the improved YOLOv5 algorithm has better robustness in complex scenes compared with other detection algorithms

traffic sign detectionsmall objectmulti-scale fusionCBAM_Ufine fusion

朱宁可、张树地、王翰文、李红松、余鹏飞

展开 >

云南大学信息学院,云南 昆明 650504

交通标志检测 小目标 多尺度融合 CBAM_U 细融合

国家自然科学基金

62066046

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(3)
  • 27