首页|基于SimAM-YOLOv5s的PCB缺陷检测算法

基于SimAM-YOLOv5s的PCB缺陷检测算法

扫码查看
为解决PCB缺陷检测存在精度低、检测效果差的问题,提出一种基于SimAM-YOLOv5s的PCB缺陷检测算法.利用Kmeans++对锚框进行重新聚类,通过添加浅层尺度信息来丰富小目标数据,提高深层和浅层语义信息的融合能力;将损失函数修改为SIoU,即引入角度损失来计算距离损失,以加快网络收敛速度,使回归参数更加准确;通过结合轻量化注意力机制SimAM为网络提供三维的注意力权重,过滤掉冗余信息,改善模型的准确性和鲁棒性.实验结果表明,改进后YOLOv5s算法的模型大小为27.7 MB,检测的平均精度均值为98.39%,比原网络提高了4.44%,有效提升了PCB缺陷检测的精度.
PCB Defect Detection Algorithm Based on SimAM-YOLOv5s
To solve the problems of low accuracy and poor detection effect of PCB defect detection,a PCB defect detection algorithm based on SimAM-YOLOv5s is proposed.Firstly,Kmeans++is used to re-cluster the anchor frames and enrich the small target data by adding shallow scale information to improve the fusion of deep and shallow semantic information;then,the loss function is modified to SIoU,that is,the angular loss is introduced to calculate the distance loss as a way to speed up the network convergence and make the regression parameters more accurate;finally,combining with the lightweight attention mechanism SimAM to provide three-dimensional attention weights for the network,filtering out redundant information,thus improving the accuracy and robustness of the model.The experimental results show the model size of the improved YOLOv5s algorithm is 27.7 MB and the average accuracy of detection is 98.39%which is 4.44%higher than the average accuracy of the original network,effectively improving the accuracy of PCB defect detection.

PCB defect detectionSimAMSIoUYOLOv5s

胡兰兰、邓超

展开 >

河南理工大学物理与电子信息学院,河南焦作 454003

PCB 缺陷检测 SimAM SIoU YOLOv5s

河南省科技攻关计划河南理工大学基本科研业务费基础研究项目(B类)

232102210100NSFRF230601

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(5)
  • 21