首页|改进YOLOv8的遥感图像检测算法

改进YOLOv8的遥感图像检测算法

扫码查看
针对目前遥感图像目标检测算法中存在的误检、漏检和检测精度低等问题,提出了一种改进YOLOv8的遥感图像检测算法.在主干网络中引入注意力机制EMA到C2f模块,以提高模型对多尺度目标的特征提取能力;在颈部网络中提出Slim-PAN结构,以减少模型计算量;使用WIOU损失函数代替CIOU损失函数,以提升模型的检测精度.通过在DIOR和RSOD遥感数据集上的实验结果表明,改进后的算法与原YOLOv8算法相比,mAP分别提升了1.5%和2.3%,计算量降低了0.3 GFLOPs,改进算法在不增加计算量的同时能提高检测精度,证明了改进算法的有效性和先进性.
Improved YOLOv8 for Remote Sensing Image Detection
An improved YOLOv8 remote sensing image detection algorithm is proposed to address the issues of false detection,missed detection,and low detection accuracy in current remote sensing image object detection algorithms.Attention mechanism EMA is introduced into the C2f module in the backbone network to improve the model's feature extraction ability for multi-scale objects.A Slim-PAN structure is proposed in the neck network to reduce the model computational complexity.WIOU loss function is used instead of CIOU loss function to improve the detection accuracy of the model.The experimental results on DIOR and RSOD remote sensing datasets show that compared with the original YOLOv8 algorithm,the mAP of the improved algorithm is increased by 1.5%and 2.3%respectively,and the calculation amount is reduced by 0.3 GFLOPs,which reflects that the improved algorithm can improve the detection accuracy without increasing the calculation amount,and the effectiveness and advancement of the improved algorithm is proved.

remote sensing imagesobject detectionYOLOv8attention mechanism

程换新、矫立浩、骆晓玲、于沙家

展开 >

青岛科技大学 自动化与电子工程学院,山东青岛 266061

青岛科技大学机电工程学院,山东青岛 266061

遥感图像 目标检测 YOLOv8 注意力机制

国家自然科学基金

62273192

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(5)
  • 22