首页|结合改进ShuffleNet-V2和注意力机制的无人机图像自主分类预警框架

结合改进ShuffleNet-V2和注意力机制的无人机图像自主分类预警框架

扫码查看
为实现灾难事件的无人机(Unmanned Aerial Vehicle,UAV)自主监测和预警,提出了结合逐通道注意力机制和高效卷积神经网络的新架构.考虑到嵌入式平台的资源限制条件,使用轻量级ShuffleNet-V2作为骨干网络,能够对更多信息进行高效编码并尽可能降低网络复杂度.为进一步提高灾难场景分类的准确度,在ShuffleNet-V2网络中结合了挤压-激发(Squeeze-Excitation,SE)模块以实现逐通道注意力机制,显著增强分类网络对重要特征的关注度.通过数据采集和增强技术获得包括12 876张图像的UAV航拍灾难事件数据集,对所提方法进行性能评估,并比较所提方法与其他先进模型的性能.结果表明,所提方法取得了99.01%的平均准确度,模型大小仅为5.6 MB,且在UAV机载平台上的处理速度超过10 FPS,能够满足UAV平台自主灾情监测任务的现实需求.
Autonomous Classification and Early Warning Framework for UAV Images Combining Improved ShuffleNet-V2 and Attention Mechanism
To realize Unmanned Aerial Vehicle(UAV)autonomous monitoring and early warning in disaster events,a novel architecture combining channel-by-channel attention mechanism and efficient convolutional neural network is proposed.Taking into account the resource constraints of embedded platforms,the lightweight ShuffleNet-V2 is used as the backbone network,by which more information is efficiently encoded and the network complexity is reduced as much as possible.In order to further improve the accuracy of disaster scene classification,a Squeeze-Excitation(SE)module is incorporated to implement a channel-wise attention mechanism,which significantly enhances the attention to important features.A UAV aerial disaster event dataset containing 12 876 images is obtained through data acquisition and enhancement technique.The performance of the proposed method is evaluated and compared with that of other advanced models.The results show that the proposed method achieves an average accuracy of 99.01%,the model size is only 5.6 MB,and the processing speed on UAV-onboard platform exceeds 10 FPS,which can meet the practical needs of UAV platform for autonomous disaster monitoring tasks.

UAVimage classificationconvolutional neural networkattention mechanismembedded platform

杨珍、吴珊丹、贾如

展开 >

内蒙古农业大学计算机技术与信息管理系,内蒙古包头 014109

内蒙古大学计算机学院,内蒙古呼和浩特 010021

无人机 图像分类 卷积神经网络 注意力机制 嵌入式平台

国家自然科学基金内蒙古自治区自然科学基金

321605062014MS0616

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(5)
  • 20