首页|基于深度学习的通信辐射源识别综述

基于深度学习的通信辐射源识别综述

扫码查看
非合作条件下的信号检测、调制方式识别及辐射源个体识别(Specific Emitter Identification,SEI)等任务,是开展战场通信侦察的重要环节.随着无线通信技术的飞速发展,辐射源种类愈加多样,信号体制愈加复杂,加之恶劣的电磁环境,给SEI工作带来了极大的挑战.近年来,随着深度学习的飞速发展,及其在自然语言处理和计算机视觉等领域的有效应用,学者们逐渐将其应用到SEI任务中,并取得了丰富的研究成果.鉴于现有文献缺乏开源数据集,汇编了可用的开源数据集,从知识驱动和数据驱动2个维度对SEI方法进行详尽梳理,包括专家系统方法和深度学习技术.通过对比分析揭示了深度学习在SEI任务中的优势,并针对当前深度学习在SEI领域面临的问题,总结了未来SEI的发展方向.
A Review of Communication Specific Emitter Identification Based on Deep Learning
Under non-cooperative conditions,signal detection,automatic modulation mode identification and Specific Emitter Identification(SEI)are crucial in battlefield communication reconnaissance.With the rapid development of wireless communication technology,the types of radiation sources have become increasingly diverse,the signal system has become more complex,and the harsh electromagnetic environment has brought significant challenges to SEI.In recent years,with the rapid advancement of deep learning and its practical applications in fields such as natural language processing and computer vision,it has gradually been applied in SEI tasks and has achieved rich research results.Given the lack of open-source datasets in the existing literature,available open-source datasets are compiled and a detailed review of SEI methods is conducted from two dimensions:knowledge-driven and data-driven approaches,including expert system methodologies and deep learning technologies.The comparative analysis reveals the advantages of deep learning in SEI tasks.Finally,the development directions of SEI are summarized,concerning the existing problems faced by deep learning in the field of SEI.

communication radiation sourceSEIdeep learningdata-drivenopen-set identification

王育欣、马宏斌、马宏、焦义文、李雪健、侯顺虎

展开 >

航天工程大学智能化航天测运控教育部重点实验室,北京 101416

通信辐射源 辐射源个体识别 深度学习 数据驱动 开集识别

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(6)
  • 28