首页|基于图注意力网络的时序知识图谱人机交互模型

基于图注意力网络的时序知识图谱人机交互模型

扫码查看
组织和检索信息是人机交互重点关注的话题之一.基于知识图谱(Knowledge Graph,KG)的智能问答系统通过语义解析用户问题,检索知识并回答问题,已成为一种信息检索的有效途径,是人机交互的典型应用.时序知识图谱(Temporal Knowledge Graph,TKG)问答系统通过语言模型获取问题中的实体和时间戳,并在大型TKG中检索答案.TKG问答系统包含2个挑战:①给定问题,需检索整个TKG,效率低且易受干扰项的影响;②难以捕获问题中隐含的时间词和时间顺序信息.提出一种基于图注意力网络的时间对比学习(Time Contrast Learning,TCL)模型,将源问题与替换时间词后的对比问题同时训练,使用图注意力网络更新实体邻接子图的节点特征,缩小潜在答案的检索空间.在CRONQUESTIONS数据集上进行大量实验,结果表明TCL比其他基准方法具有更好的性能,相较于最先进的基准方法在Hit@1和Hits@10指标上平均提升3.44%和2.02%.
A Human-Computer Interaction Model over Temporal Knowledge Graphs Based on Graph Attention Networks
Organizing and retrieving information is one of the key topics in human-computer interaction.Intelligent question-answering system over Knowledge Graph(KG)has become an effective way to retrieve information through semantic parsing of user's ques-tions,retrieving knowledge and answering questions,which is a typical application of human-computer interaction.Question-answering sys-tem over Temporal Knowledge Graph(TKG)obtains entities and timestamps from questions through the language model and retrieves an-swers from a large TKG However,the question-answering system over temporal knowledge graphs contains two challenges:① Given the question,the entire TKG needs to be retrieved,which is inefficient and vulnerable to interfering items;② It is difficult to capture the time words and chronological information in the question.A Time Contrast Learning(TCL)is proposed,which trains both the source problem and the contrast problem after replacing the temporal words,and uses the graph attention network to update the node features of the entity neighbor sub-graph,in order to reduce the retrieval space for potential answers.Extensive experiments are conducted on the CRONQUES-TIONS dataset,and the results show that TCL has better performance than other benchmark methods with an average improvement of 3.44%in the metric of Hits@1 and 2.02%in Hits@10,respectively,when compared to the state-of-the-art baseline method.

intelligent question answeringTKGgraph attention networksTCLlanguage model

于泳、乔少杰、陈金勇、高林、黄江涛、刘晨旭、韩楠、张桃、蔡宏果

展开 >

成都信息工程大学软件工程学院,四川成都 610225

四川西南联盛通讯技术有限公司,四川 宜宾 644012

中国电子科技集团公司第五十四研究所,河北 石家庄 050081

南宁师范大学计算机与信息工程学院,广西南宁 530001

成都信息工程大学管理学院,四川成都 610225

宜宾学院人工智能与大数据学部,四川 宜宾 644012

南宁师范大学数学与信息科学学院,广西南宁 530001

展开 >

智能问答 时序知识图谱 图注意力网络 时间对比学习 语言模型

国家自然科学基金四川省科技计划四川省科技计划四川省科技计划四川省科技计划教育部人文社会科学研究规划基金宜宾市引进高层次人才项目成都市"揭榜挂帅"科技项目成都市"揭榜挂帅"科技项目成都市技术创新研发项目(重点项目)成都市区域科技创新合作项目中国电子科技集团公司第五十四研究所高校合作课题成都海关科研项目

622720662021JDJQ00212022YFG01862022NSFSC05112023YFG002722YJAZH0882022YG022022-JB00-00002-GX2021-JB00-00025-GX2024-YF08-00029-GX2023-YF11-00020-HZSKX2120100572022CK008

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(7)