首页|无人机辅助移动边缘计算的卸载决策与功率分配联合优化

无人机辅助移动边缘计算的卸载决策与功率分配联合优化

扫码查看
由于移动设备(Mobile Device,MD)的计算能力有限,在执行实时性和计算密集性的业务时将面临巨大的压力.为此研究了基于非正交多址接入(Non-Orthogonal Multiple Access,NOMA)技术的双层无人机(Unmanned Aerial Vehicle,UAV)辅助移动边缘计算(Mobile Edge Computing,MEC)的异构网络,配备边缘服务器的UAV协同基站为MD提供计算卸载服务.针对该异构网络,建立通信模型和计算模型,提出能耗和时间加权和最小化问题,开发了一个任务卸载和MD发射功率分配的联合优化算法.该算法将原始优化问题分为2个子问题,分别用改进的二进制粒子群优化(Improved Binary Particle Swarm Optimization,IBPSO)算法和改进的原子轨道搜索(Improved Atomic Orbit Search,IAOS)算法来解决任务卸载决策子问题和MD发射功率分配子问题.仿真结果表明,相比于基准算法,当改变最大发射功率、每比特计算周期和MD任务大小时,所提算法的时间与能耗的加权和分别最大减少29.2%、29.2%和33.2%;该算法在20次迭代内收敛,具有良好的收敛性.
Joint Optimization of Unloading Decision and Power Allocation for UAV-assisted Mobile Edge Computing
Due to the limited computing power of Mobile Device(MD),there is immense pressure when executing real-time and computationally intensive tasks.Therefore,this heterogeneous network based on Non-Orthogonal Multiple Access(NOMA)technology with double-layer Unmanned Aerial Vehicle(UAV)assisted Mobile Edge Computing(MEC)is studied.UAV equipped with edge server can cooperate with base stations to provide computing and unloading service for MD.A communication model and a computational model are established for this heterogeneous network.Then,the energy consumption and time weighting and minimization problems are proposed,and a joint optimization algorithm for mission unloading and MD transmitting power allocation is developed.The original problem is divided into two subproblems,then an Improved Binary Particle Swarm Optimization(IBPSO)algorithm is used to solve the mission unloading decision subproblem,and an Improved Atomic Orbit Search Algorithm(IAOS)is used to solve the MD transmitting power allocation subproblem.The simulation results show that compared with several benchmark algorithms,the weighted sum of time and energy consumption of the proposed algorithm decreases by 29.2%,29.2%and 33.2%respectively in the circumstances of different maximal transmitting power,computing cycle per bit and MD task size.At the same time,the algorithm converges within 20 iterations and has preeminent ability of convergence.

MECheterogeneous networkUAVmetaheuristic algorithmNOMA

诸锦涛、李晖、宋端正、王昊、周乐佳

展开 >

南京信息工程大学 电子与信息工程学院,江苏南京 210044

无锡学院江苏省集成电路可靠性技术及检测系统工程研究中心,江苏无锡 214105

移动边缘计算 异构网络 无人机 元启发式算法 非正交多址接入

国家自然科学基金江苏省基础研究计划青年基金项目江苏省双创博士人才项目江苏省研究生科研与实践创新计划基金项目

61661018BK20210064JSSCBS20210863SJCX23_0379

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(7)