首页|鲁棒多尺度神经网络的频谱感知方法研究

鲁棒多尺度神经网络的频谱感知方法研究

扫码查看
在认知无线电(Cognitive Radio,CR)中,频谱感知(Spectrum Sensing,SS)是支持动态频谱分配、提高频谱利用率的关键技术.传统的SS方法容易受到噪声不确定的影响,导致在低信噪比(Signal to Noise Ratio,SNR)环境下检测准确率较低且计算参数量较大.针对这些问题,提出了基于信号处理(Signal Processing,SP)特征的鲁棒多尺度神经网络(Robust-Multiscale Neural Network,R-MsNN)的SS方法,结合多尺度神经网络和门控循环单元(Gated Recurrent Unit,GRU)的优点,有效地解决了 SS中面临的挑战.多尺度神经网络从底层到高层逐渐提取抽象的特征,以增强信号识别的鲁棒性.GRU有选择性地保留和遗忘过去时间信息,从而更好地捕获长期依赖性和时间关系.为了验证R-MsNN的泛化能力,实验将从广义高斯分布(Generalized Gaussian Distribution,GGD)生成的噪声样本作为噪声模型1,以及从未占用的调频广播信道中收集到的实验数据作为噪声模型2的环境下,分别与不同的深度神经网络(Deep Neural Network,DNN)架构进行了 SS性能比较.实验结果表明,采用组合SP特征训练的R-MsNN的平均检测概率与最优模型相比,在4种不同参数下的噪声模型1中分别提高了 1.74%、2.55%、2.08%、1.59%,在噪声模型2中提高了 1.72%.此外,与GRU相比,R-MsNN的参数量减少了一半.由此说明,采用组合SP特征训练的R-MsNN在多种复杂噪声环境下均具有很强的鲁棒性,且能够满足SS任务中高检测概率和低参数量的双重需求.
Research on Spectrum Sensing Method by Robust Multiscale Neural Network
In Cognitive Radio(CR),Spectrum Sensing(SS)is a key technology that supports dynamic spectrum allocation and enhances spectrum utilization.However,traditional SS methods are susceptible to the impact of noise uncertainty,resulting in lower detection accuracy and a higher computational parameter load in low Signal to Noise Ratio(SNR)environments.To solve these problems,an SS method by Robust-Multiscale Neural Network(R-MsNN)based on Signal Processing(SP)features is proposed.This method combines the advantages of multiscale neural network and Gated Recurrent Unit(GRU)to effectively address the challenges faced in SS.The multiscale neural network gradually extracts abstract features from the bottom layer to the top layer to enhance the robustness of signal recognition.GRU selectively retains and forgets past temporal information,thereby better capturing long-term dependencies and temporal relationships.To validate the generalization capability of R-MsNN,the SS performance of R-MsNN is compared with that of different Deep Neural Network(DNN)architectures in two different noise models:one generated from a Generalized Gaussian Distribution(GGD)as noise model 1,and experimental data collected from unoccupied frequency modulation broadcasting channels as noise model 2.The experimental results demonstrate that,compared to the optimal model,R-MsNN trained with a combination of SP features achieved an average detection probability increase of 1.74%,2.55%,2.08%,and 1.59%for four different noise models 1,and a 1.72%increase for noise model 2.Additionally,compared to GRU,R-MsNN has half the number of parameters.This indicates that R-MsNN trained with a combination of SP features,exhibits robustness in a variety of complex noise en-vironments and can meet the dual requirements of high detection probability and low parameter number in SS tasks.

SSSPneural network

孟水仙、闫森、王树彬

展开 >

内蒙古自治区无线电监测站,内蒙古呼和浩特 010011

内蒙古大学 电子信息工程学院,内蒙古呼和浩特 010021

频谱感知 信号处理 神经网络

国家自然科学基金

62361048

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(8)
  • 2