首页|基于紧凑型双线性网络的野生菌识别方法研究

基于紧凑型双线性网络的野生菌识别方法研究

扫码查看
野生菌因味道鲜美、营养价值高而受到人们的青睐.近年来因食用野生菌而导致中毒死亡的事件频发,因此采用深度学习来对野生菌进行识别与鉴定.为解决该问题,从细粒度角度出发,提出一种改进的高效紧凑型双线性卷积神经网络(Efficient Compact Bilinear Convolutional Neural Network,Efficient-CBCNN).采用双线性网络框架,移除 EfficientNetV2模型的分类层,作为双线性网络的分支,提取特征;引入性能更好的高效多尺度注意力(Efficient Multi-scale Attention,EMA)机制改进EfficientNetV2,在保持性能的同时计算量更小;对分支EfficientNetV2结构进行精简,降低结构的复杂度和计算开销;接入紧凑双线性池化(Compact Bilinear Pooling,CBP)对2个分支输出的特征进行池化操作,捕捉2个特征图之间的高阶交互信息,增强特征的表达能力;连接自定义的全连接层进行分类.实验结果表明,Efficient-CBCNN模型识别准确率得到较大提升,取得98.49%的准确率,相较于VGG16、ResNet50、ShufflenetV2、BCNN(原始)四种模型,所提模型在准确率上分别提升了 10.17%、6.19%、12.82%、5.33%,且参数量较BCNN(原始)更少,训练速度更快.
Research on Identification Method of Wild Mushrooms Based on Compact Bilinear Network
Wild mushrooms are favored by people because of their delicious taste and high nutritional value.In recent years,poisoning deaths due to eating wild mushrooms have occurred frequently,so deep learning is used to identify wild mushrooms.In order to solve this problem,an improved Efficient Compact Bilinear Convolutional Neural Network(Efficient-CBCNN)is proposed from the perspective of fine granularity.The bilinear network framework is adopted.Firstly,the classification layer of EfficientNetV2 model is removed as a branch of the bilinear network to extract features;Secondly,the Efficient Multi-scale Attention(EMA)mechanism with better performance is introduced to improve EfficientNetV2,which can maintain the performance while reducing the computational load.Then the branch EfficientNetV2 structure is simplified to reduce the complexity of the structure and computing overhead.Then,the Compact Bilinear Pooling(CBP)is accessed to pool the features output from the two branches,capture the higher-order interactive information between the two feature maps,and enhance the expression ability of features.Finally,connect the user-defined full connection layer for classification.The experimental results show that the recognition accuracy of Efficient-CBCNN model has been greatly improved,achieving 98.49%accuracy.Compared with the four models VGG16,ResNet50,ShufflenetV2,and BCNN(original),the accuracy of the proposed model has been improved by 10.17%,6.19%,12.82%,and 5.33%respectively,and the number of parameters is less than that of BCNN(original),and the training speed is faster.

identification of wild mushroomEfficientNetV2EMAcompact poolingfine grained

胡庆然、王佳木、曹丽英、刘鹤

展开 >

吉林农业大学信息技术学院,吉林长春 130118

野生菌识别 EfficientNetV2 高效多尺度注意力 紧凑型池化 细粒度

吉林省科技厅创新平台和人才专项

20220508133RC

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(8)
  • 8