首页|基于单通道上下文编码的轻量化睡眠分期模型

基于单通道上下文编码的轻量化睡眠分期模型

扫码查看
利用多模态信号中不同信号之间的频率关系来处理睡眠分期任务已成为当今的主流.然而,多模态信号采集的难度限制了睡眠分期任务的进一步发展.此外,数据集分类不均衡,参数量级大也是限制睡眠分期任务发展的重要原因.针对上述问题,提出了一种基于单通道脑电图(Electroencephalogram,EEG)数据的全卷积网络模型.通过U型结构和特征融合模块学习EEG信号的波形信息,利用并行的多尺度时间特征代替循环网络提取时间序列信息,使用瓶颈结构减少参数量,使用焦变函数降低数据类别间分布不均对分类精度的影响.在公共数据集Sleep-EDF上的实验结果表明,所提模型对单通道EEG数据实现了 87.5%的分类准确率,缓解了数据集不平衡问题.值得一提的是,所提模型的参数数量仅为Deepsleep 网络的 2.86%.
A Lightweight Sleep Staging Model Based on Single-channel Context Encoding
Utilizing the frequency relationships between different signals in multimodal signals to handle sleep staging tasks has become the mainstream of today.However,the difficulty of multimodal signal acquisition limits further development of sleep staging tasks.In addition,the unbalanced classification of the data set and the large magnitude of parameters are also important reasons that limit the development of sleep staging tasks.In response to the above problems,a fully convolutional network model based on single-channel Electroencephalogram(EEG)data is proposed.The waveform information of EEG signals is learned through the U-shaped structure and feature fusion module.The parallel multi-scale time features are used to instead the recurrent networks to extract time series information.The bottleneck structure is used to reduce the amount of parameters,and the focal loss function is used to reduce the impact of uneven distribution between data categories on classification accuracy.Experimental results on the public data set Sleep-EDF show that the proposed model achieves a classification accuracy of 87.5%for single-channel EEG data,alleviating the problem of imbalanced data set.It is worth mentioning that the number of parameters of the proposed method is only 2.86%of which of the Deepsleep network.

EEG signalsleep stagingdilated convolutionclass imbalancefocal loss function

仝爽、王琪、孙久淞

展开 >

南京信息工程大学 电子与信息工程学院,江苏南京 210044

脑电信号 睡眠分期 空洞卷积 类别失衡 焦变函数

江苏省研究生培养创新工程项目

SJCX23_0373

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(8)