首页|基于DDPG的无人机安全通信效益任务卸载方案

基于DDPG的无人机安全通信效益任务卸载方案

扫码查看
由于无人机具有高机动性、高灵活性的优势,被广泛应用于移动边缘计算系统中.但是,其视线线路空对地无线链路,使得无人机更容易被敌手窃听.针对该问题,构建了由辅助无人机、用户设备、入侵无人机和基站组成的多用户多任务的无人机辅助移动边缘计算(Mobile Edge Computing,MEC)安全通信系统模型,通过引入安全通信效益这一概念,将无人机隐私安全通信问题转化为最大化辅助无人机的安全通信效益问题.提出了基于深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)的安全通信效益任务卸载算法,该算法通过联合优化无人机的释放位置、用户任务卸载率和基站以及无人机计算资源分配,来最大化无人机的安全通信效益.仿真结果表明,该算法取得的安全通信效益与其他算法相比,在不同任务量方面,平均效益要高25.42%,在不同任务复杂度方面,平均效益要高33.12%.
DDPG Based Task Offloading Scheme for Optimal Unmanned Aerial Vehicle Security Communication Benefit
Due to the advantages of high mobility and flexibility,Unmanned Aerial Vehicles(UAVs)are widely used in mobile edge computing systems.However,its line of sight air to ground wireless link makes drones more susceptible to enemy eavesdropping.To solve this problem,a multi-user and multi task UAV assisted Mobile Edge Computing(MEC)security communication system model consisting of auxiliary UAV,user equipment,intruder UAV and base station is constructed firstly.Then,by introducing the concept of security communication benefit,the problem of UAV privacy security communication is transformed into the problem of maximizing the security communication benefit of the auxiliary UAV.Finally,a task offloading algorithm based on Deep Deterministic Policy Gradient(DDPG)for optimal security communication benefit is proposed.This algorithm maximizes the security communication benefit of drones by jointly optimizing the release position of drones,user task offloading rate,and allocation of computing resources between base stations and drones.The simulation results show that the security communication benefits achieved by this algorithm are 25.42%higher on average compared to other algorithms in terms of different task volumes,and 33.12%higher on average in terms of different task complexity.

security communication benefitsDDPGMECUAVresource allocation

刘建华、谢鹏、刘佳嘉、涂晓光

展开 >

中国民用航空飞行学院航空电子电气学院,四川德阳 618307

安全通信效益 深度确定性策略梯度 移动边缘计算 无人机 资源分配

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(10)