首页|基于级联注意力和边界预测改进的轻量Segformer语义分割

基于级联注意力和边界预测改进的轻量Segformer语义分割

扫码查看
针对Segformer网络中无法有效聚合和使用多尺度信息并且边界模糊的问题,提出了基于级联注意力和边界预测的语义分割网络.在Segformer的解码器部分,通过使用级联注意力,有效聚合了多尺度特征信息并通过聚合多尺度特征进行边界预测,对语义分割任务进行辅助.在梯度更新部分,加入梯度手术,减少因添加辅助任务导致的任务之间出现的梯度冲突对训练的干扰问题,加快模型收敛速度.在ADE20k数据集和Cityscapes数据集上进行实验,通过增加了 2.69 M参数和24.67 G的计算量,提高了网络2.38%的平均交并比,证明了所提方法的有效性.
Lightweight Segformer Semantic Segmentation Based on Cascaded Attention and Boundary Prediction Improvements
To solve the problem that multi-scale information cannot be effectively aggregated and used and the boundaries are blurred in Segformer network,a semantic segmentation network based on cascaded attention and boundary prediction is proposed.In the decoder part of Segformer,by using cascaded attention,multi-scale feature information is effectively aggregated and boundary prediction is performed by aggregating multi-scale features to provide assistance for semantic segmentation tasks.In the gradient update part,gradient surgery is added to reduce the interference to training by gradient conflicts between tasks caused by adding auxiliary tasks and speed up model convergence.Experiments are conducted on ADE20k dataset and Cityscapes dataset.By increasing the calculation amount of 2.69 M parameters and 24.67 G,the average intersection over union ratio of the network is improved by 2.38%,proving the effectiveness of the proposed method.

Segformercascaded attentionauxiliary tasksboundary predictiongradient surgery

高延海、刘永帅

展开 >

青岛理工大学信息与控制工程学院,山东青岛 266525

Segformer 级联注意力 辅助任务 边界预测 梯度手术

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(11)