首页|小样本深度学习在目标识别分类领域的应用前景研究

小样本深度学习在目标识别分类领域的应用前景研究

扫码查看
近年来,深度学习技术在大数据训练模型上取得了显著成就.但由于领域的特殊性,很难获取到大量标注/无标注样本,人工标注数据会耗费大量的人力,限制了其在该领域的应用和推广.而小样本目标识别分类只需要少量的标注样本数据,即可实现在有限样本条件下对典型目标的识别分类.以目标识别分类为主要应用领域,对基于数据增强、迁移学习和度量学习3种常用的提升小样本目标识别分类性能算法的研究现状进行了介绍,并阐述了算法的优缺点.对小样本学习仍旧面临的一些挑战和未来研究方向的展望进行了梳理和总结.
Research on Application Prospects of Few-shot Deep Learning in Object Recognition and Classification Field
In recent years,deep learning technology has made remarkable achievements in big data training models.However,due to the particularity of the field,it is difficult to obtain a large number of labeled/unlabeled samples.And manual annotation of data will consume a lot of manpower,limiting its application and promotion in this field.Few-shot object recognition and classification only requires a small amount of labeled sample data to achieve the recognition and classification of typical objects under limited sample conditions.Taking recognition and classification as the main application field,the research status of three commonly used algorithms for improving the performance of few-shot object recognition and classification based on data enhancement,transfer learning and metric learning is introduced and the advantages and disadvantages of these algorithms are elaborated.Finally,some challenges still faced by few-shot learning and prospects for future research directions are sorted out and summarized.

few-shot object recognition and classificationdata augmentationtransfer learningmetric learning

高静、冯金顺、董少然、郭新苍、范烁晨、赵乾宏、朱光耀、陈家良、马胤垚

展开 >

中国电科网络通信研究院,河北 石家庄 050081

中国卫星海上测控部,江苏江阴 214431

小样本目标识别分类 数据增强 迁移学习 度量学习

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(11)