首页|基于U-Net医学图像智能分割的网络结构演变

基于U-Net医学图像智能分割的网络结构演变

扫码查看
随着医疗需求的持续增长,深度学习技术在医学图像自动分割领域展现出巨大的潜力.空间数据智能的发展为医学图像的精确分割提供了新的解决思路.U-Net作为医学图像分割领域最具影响力的网络架构,自2015年提出以来在各类医学影像任务中得到了广泛应用,其独特的编码器-解码器结构设计不仅为后续研究奠定了基础范式,更催生了大量改进网络.系统梳理了 U-Net架构的重要发展里程碑:ResUNet通过残差连接解决了深层网络训练困难的问题,Attention-UNet引入自适应注意力机制提升了在跳跃连接中的特征选择精确度,而TransUNet和Swin-UNet则代表了将现代Transformer引入医学图像分割的2个关键阶段,展现了卷积神经网络(Convolutional Neural Network,CNN)与Transformer融合的巨大潜力.通过分析这些代表性网络的架构创新和性能突破,揭示了医学图像分割技术从纯CNN架构向CNN-Transformer混合架构演进的发展趋势.此外,探讨了现有技术面临的挑战,对未来空间数据智能的发展方向提供了见解,为该领域的进一步研究提供了参考.
The Evolution of Network Structures for Intelligent Segmentation of Medical Images Based on U-Net
With the increasing demands in healthcare,deep learning technologies have shown tremendous potential in the field of automatic medical image segmentation.The advancement in spatial data intelligence provides novel solutions for achieving high-precision segmentation in medical imaging.As the most influential/prominent network architecture,U-Net has been widely applied across various medical imaging tasks since its introduction in 2015.Its distinctive encoder-decoder structure design not only establishes a fundamental paradigm for subsequent research but also has inspired numerous network improvements.A systematic review of key advancements in U-Net architecture development is provided.ResUNet addresses the training challenges in deep networks by incorporating residual connections,which enhances model stability and convergence.Attention-UNet improves feature selection accuracy within the skip connections by introducing adaptive attention mechanisms.TransUNet and Swin-UNet represent two crucial stages in incorporating modern Transformer architectures into medical image segmentation,demonstrating the significant potential of CNN-Transformer fusion for improving feature representation and segmentation accuracy.The evolutionary trend of medical image seg-mentation technology is highlighted from conventional CNN-based architectures to CNN-Transformer hybrid architectures.Additionally,the challenges faced by existing technologies are addressed and insights into future development/research directions are provided,provi-ding a comprehensive reference for further research in this field.

deep learningU-Netmedical image segmentationneural network architecture

刘紫权、史旭阳、胡海、马远萍、朱哲维、李珂

展开 >

西南科技大学信息工程学院,四川绵阳 621010

西南科大四川天府新区创新研究院,四川成都 610229

成都市公安局科技信息化处,四川成都 610017

深度学习 U-Net 医学图像分割 神经网络结构

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(12)