首页|基于YOLOv5-CBAM模型的划痕智能检测

基于YOLOv5-CBAM模型的划痕智能检测

扫码查看
带钢作为现代钢铁产业的核心产品,划痕检测对于确保产品质量、提升生产效率和降低成本至关重要,广泛应用于汽车制造、金属加工、电子产品生产等领域.然而,划痕形态各异且易受光照、背景和噪声等因素影响,使得检测任务极具挑战性.近年来,随着空间数据智能技术的不断进步,基于深度学习的目标检测算法(如Faster R-CNN、SSD、YOLO等)在检测任务中表现出色,通过自动学习、特征检测和精准目标定位,在复杂背景下也能准确检测.基于YOLOv5模型进行了算法结构的改进,将空间金字塔池化(Spatial Pyramid Pooling,SPP)模块替换为快速空间金字塔池化(Spatial Pyramid Pooling-Fast,SPPF)模块,引入注意力机制,改进现有的目标检测算法,提升划痕检测的准确性和鲁棒性.结合卷积块注意力机制模块(Convolutional Block Attention Module,CBAM)构建了 YOLOv5-CBAM模型.CBAM通过关注通道和空间维度上的信息,使模型更精准地聚焦于划痕区域,提升了检测效果.实验结果显示,YOLOv5-CBAM模型在各类交并比(Intersection over Union,IoU)阈值下相较于YOLOv5,精确率、召回率和mAP@0.5有着较好的表现,分别提升了5.6%、9.1%和5.9%.随着空间数据智能技术的不断进步,未来有望为划痕检测提供更多创新思路和解决方案.
Intelligent Scratch Detection Based on YOLOv5-CBAM Model
As a core product of modern steel industry,strip steel plays a crucial role in surface quality control.Scratch detection occupies a vital position in surface quality control and is extensively applied in fields such as automobile manufacturing,metal processing,and electronic product production.However,due to the diverse shapes and sizes of scratches and the impact of factors such as illumination,background,and noise,the detection task is extremely challenging.In recent years,target detection algorithms based on deep learning(such as Faster R-CNN,SSD,and YOLO)have performed outstandingly in detection tasks.Through automatic learning,feature detecting,and precise target localization,these algorithms enable accurate detection even with complex backgrounds.Based on the YOLOv5 model,the Spatial Pyramid Pooling-Fast(SPPF)module is used instead of the Spatial Pyramid Pooling(SPP)module,and an attention mechanism is incorporated to improve the existing target detection algorithm to enhance the accuracy and robustness of scratch detection.Based on the YOLOv5 model,a YOLOv5-CBAM model is constructed by integrating the YOLOv5 with the Convolutional Block Attention Module(CBAM).The CBAM makes the model focus more accurately on the scratch area by paying atten-tion to the information in the channel and spatial dimensions,improving the detection effect.Experimental results show that,compared to YOLOv5,the YOLOv5-CBAM model achieves great performance in precision,recall,and mAP@0.5 across various Intersection over Union(IoU)thresholds,with increasement of 5.6%,9.1%and 5.9%respectively.Meanwhile,with the continuous progress of spatial data intelligence technology,it is expected to provide more innovative ideas and solutions for scratch detection in the future.

scratch detectionYOLOv5CBAMmodel construction and training

朱哲维、李珂、匡璐、曹国栋、刘紫权、史旭阳

展开 >

西南科技大学信息工程学院,四川绵阳 621010

成都市公安局科技信息化处,四川成都 610017

西南科大四川天府新区创新研究院,四川成都 610229

划痕检测 YOLOv5 卷积块注意力机制模块 模型构建与训练

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(12)