首页|基于脑电与面部特征拼接融合的驾驶疲劳识别研究

基于脑电与面部特征拼接融合的驾驶疲劳识别研究

扫码查看
使用面部特征和脑电(Electroencephalogram,EEG)特征识别驾驶员的疲劳状态,对驾驶员进行疲劳提醒,可以有效降低事故发生概率.为解决单一面部特征或EEG特征识别精度不高的问题,提出一种基于EEG与面部特征拼接融合的疲劳识别方法.提取EEG信号的时域、频域、非线性特征和面部特征,通过特征层信息融合的方法进行特征拼接.为提高面部特征识别速度,提出了一种改进的YOLOv5_mobilenet模型.在此基础上,将拼接后的融合特征通过六大机器学习模型进行精度识别,并选择准确性、F1_score、精确率和召回率进行分析、评价.使用公开的数据集来验证所提出的方法,结果表明,改进的YOLOv5_mobilenet模型在各个特征表现均高于现有模型;不同的机器学习模型评价结果显示,与单一的疲劳特征识别相比融合特征表现更好,因此,基于EEG与面部特征拼接的融合特征用于驾驶疲劳识别是可行的.
Study on Driving Fatigue Recognition Based on Splicing and Fusion of EEG and Facial Features
Using facial and Electroencephalogram(EEG)features to identify the driver's fatigue state and provide fatigue reminders can effectively reduce the probability of accidents.To solve the problem of low recognition accuracy of single facial features or EEG features,a fatigue recognition method based on the fusion of EEG and facial features is proposed.Firstly,the time-domain,frequency-domain,nonlinear features and facial features of the EEG signal are extracted,and feature splicing is performed through feature layer information fusion.To improve the speed of facial feature recognition,an improved YOLOv5_mobilenet model is proposed.On this basis,the accuracy of the fused features after splicing is detected through six major machine learning models,and accuracy,F1_score,precision,and recall are selected for analysis and evaluation.The proposed method is validated using a publicly available dataset,and the results show that the improved YOLOv5_mobilenet model outperforms existing models in all feature performances.The evaluation results of different machine learning models show that recognition with fused features performs better than single fatigue feature recognition.Therefore,it is feasible to use fused features based on EEG and facial feature splicing for driving fatigue recognition.

EEG signal featuresfacial image featuresfeature fusionfatigue recognitionmachine learning

郭寒英、王诗麟、刘双侨、董文安、卓小军、王星捷、唐立、乔少杰

展开 >

西华大学汽车与交通学院,四川成都 610039

四川易方智慧科技有限公司,四川成都 610094

成都交投信息科技有限公司,四川成都 610073

四川九门科技股份有限公司,四川成都 610095

宜宾学院计算机科学与技术学院,四川宜宾 644000

成都信息工程大学软件工程学院,四川成都 610225

展开 >

脑电信号特征 面部图像特征 特征融合 疲劳识别 机器学习

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(12)