首页|改进YOLOv8的轻量级航拍目标检测算法

改进YOLOv8的轻量级航拍目标检测算法

扫码查看
针对无人机嵌入式平台计算资源受限的挑战,为实现高准确率和轻量化的实时无人机航拍目标检测,提出了改进YOLOv8的轻量级航拍目标检测算法.引入分离增强注意力模块(Separated and Enhancement Attention Module,SEAM)缓解航拍图像中的目标遮挡问题;增设针对小目标的检测层,提高小目标的检测精度;将Ghost模块融入C2f模块,形成C2f-Ghost模块,显著降低了模型参数量;对改进网络进行全局通道剪枝,在保证检测准确率的同时进一步压缩模型参数量;将剪枝后的模型部署于Jetson Xavier NX嵌入式平台,使用TensorRT加速模型推理.在VisDrone2019数据集上进行实验,综合指标超越了对比算法,平均检测精度达到53.6%,提升了 4.1%,模型参数量和计算量分别减少88.4%和50.1%,在嵌入式平台上检测速度为24.17帧/秒,验证了该方法的有效性.
Improved YOLOv8 Lightweight Aerial Object Detection Algorithm
For the challenge of limited computing resources of embedded UAV platform,in order to achieve high accuracy and lightweight real-time UAV aerial target detection,an improved YOLOv8 lightweight aerial target detection algorithm is proposed.The Separation Enhanced Attention Module(SEAM)is introduced to alleviate the problem of target occlusion in aerial images.A detection layer for small targets is added to improve the detection accuracy of small targets.The Ghost module is integrated into C2f module to form C2f-Ghost module,which significantly reduces the number of model parameters.The global channel pruning is performed on the improved network to ensure the detection accuracy and further reduce the model parameters.The pruned model is deployed on the Jetson Xavier NX embedded platform,and TensorRT is used to accelerate model inference.The experiment is performed on VisDrone2019 dataset and the comprehensive index is better than that of the comparison algorithm.The average detection accuracy reaches 53.6%,an increase of 4.1%.The number of model parameters and calculation amount are reduced by 88.4%and 50.1%respectively.The detection speed is 24.17 frame/s on the embedded platform,which verifies the effectiveness of the method.

target detectionaerial imagesYOLOv8model pruningTensorRT acceleration

谢建斌、唐俊峰、卿粼波、杨红

展开 >

四川大学电子信息学院,四川成都 610041

成都七中初中附属小学,四川成都 610094

目标检测 航拍图像 YOLOv8 模型剪枝 TensorRT加速

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(12)