首页|基于双通道和Transformer的视网膜血管分割

基于双通道和Transformer的视网膜血管分割

扫码查看
针对视网膜眼底血管分割结果存在的断裂、分割不足等问题,提出局部与全局双支路分割模型,局部支路先对图像进行平均分割,对分割后的图片进行局部特征信息提取,全局支路则是对全局信息进行特征提取,在2条支路之间通过特征融合模块(Feature Fusion Module,FFM)进行连接,使得网络之间的联系更加密切,全局、局部支路信息共享,在局部支路的最底层加入层数为6的Transformer模块,对底层的抽象通知进行高效提取利用,减少特征信息的丢失,提高网络的分割精度.提出的模型在公开数据集DRIVE、STARE上的准确率分别为98.39%、98.76%,与传统模型分割精度相比得到了较大的提升.
Retinal Vessel Segmentation Based on Dual Channel and Transformer
A local and global dual branch segmentation model to address issues such as breakage and insufficient segmentation in retinal fundus blood vessel segmentation results is proposed.The local branch first performs average segmentation on the image,extracts local feature information from the segmented image,while the global branch extracts global information.Feature Fusion Module(FFM)connects the two branches to make the network more closely connected and share global and local branch information.In this research,a Transformer module with 6 layers is added at the bottom layer of the local branch to efficiently extract and utilize abstract notifications at the bottom layer,thereby reducing the loss of feature information and improving segmentation accuracy of the network.The accuracy of the proposed model for public datasets DRIVE and STARE are respectively 98.39%and 98.76%,representing a significant improvement in segmentation accuracy compared to traditional models.

image segmentationretinal blood vesselsdual channel modelfeature fusion

王勇、朱家明、陶寅涵

展开 >

扬州大学信息工程学院,江苏扬州 225127

图像分割 视网膜血管 双通道模型 特征融合

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(12)