首页|基于假设检验的SAR图像水域分割增强方法

基于假设检验的SAR图像水域分割增强方法

扫码查看
水域图像分割常应用于洪灾监测、地表水资源勘察等工作.合成孔径雷达(Synthetic Aperture Radar,SAR)图像常常带有阴影和干扰斑,导致现有的水域分割结果容易出现水域连通性差、水域边缘粗糙等问题.为了更好地利用目标的边缘信息解决这些问题,分别独立采用语义分割和超像素分割得到水域预测结果与超像素聚类掩码,利用假设检验模型融合2种方法的分割结果.在U-Net、SegNet、DeepLabV3+和超像素图卷积网络(Superpixel Graph Convolutional Network,SGCN)4种语义分割方法进行实验,分割精度均有提升.在U-Net上提升最大,平均交并比(mean Intersection over Union,mIoU)由78.24%提升至83.39%.对比了 3种不同的超像素分割方法的改善效果,实验结果表明,所提方法在线性谱聚类(Linear Spectral Clustering,LSC)中表现最佳.
Enhancement Method for SAR Image Water Segmentation Based on Hypothesis Testing
Water image segmentation is often used in flood monitoring and water resources exploration,etc.Synthetic Aperture Radar(SAR)images often have shadows and interference spots,which leads to problems of poor connectivity and rough edges when using existing water segmentation methods.To make better use of the edge information of target to solve these problems,semantic segmentation and superpixel segmentation are utilized first to obtain the predicted results of water and superpixel clustering masks respectively.Then the hypothesis testing model is used to fuse the segmentation results of the two methods.Experiments are conducted on four semantic segmentation methods including U-Net,SegNet,DeepLabV3+and Superpixel Graph Convolutional Network(SGCN),and the segmentation accuracy of all the methods is improved.Among them,the improvement on U-Net is the greatest,with the mean Intersection over Union(mIoU)increased from 78.24%to 83.39%.Three different superpixel segmentation methods are also compared.The results show that the proposed method achieves the best performance on Linear Spectral Clustering(LSC).

superpixelhypothesis testingSAR imagewater segmentationsuperpixel segmentation

项文成、王洲、王建平、王琪

展开 >

东北大学理学院,辽宁沈阳 110819

超像素 假设检验 合成孔径雷达图像 水域分割 超像素分割

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(12)