首页|考虑特征关联性的ALO-CNN-LSTM短期负荷预测

考虑特征关联性的ALO-CNN-LSTM短期负荷预测

扫码查看
针对短期负荷预测模型未充分考虑负荷的时序性和非线性以及历史负荷的高冗余性,提出一种考虑特征关联性的ALO-CNN-LSTM短期负荷预测模型.采用卷积神经网络(CNN)获取负荷时间序列高维空间特征.采用Copula函数对天气、湿度等气象因素序列与高维空间特征进行关联性分析,选出相关性较高的特征参量,采用长短期记忆网络(LSTM)获取高维时域特征,同时结合蚁狮优化(ALO)算法训练模型并确定最佳参数,提高模型的收敛速度和预测精度.以电工数学建模竞赛负荷为例进行仿真分析,并对比不同的优化算法和预测模型.仿真结果表明:模型具有较快的收敛速度和较高预测精度,验证模型的有效性以及实用性.
ALO-CNN-LSTM Short-term Load Forecasting by Considering Feature Correlation
In view of the fact that the short-term load forecasting model does not fully consider the timing and nonlinearity of the load and the high redundancy of the historical load,an ALO-CNN-LSTM short-term load forecasting model considering feature correlation is proposed.The convolutional neural network(CNN)is used to obtain high-dimensional spatial features of load time series.The Copula function is used to analyze the correlation between the sequence of meteorological factors such as weather and humidity and the high-dimensional spatial features,and the characteristic parameters with high correlation are se-lected.At the same time,combined with the ant lion optimization algorithm(ALO)to train the model and determine the opti-mal parameters to improve the convergence speed and prediction accuracy of the model.The simulation analysis is carried out by taking the load of the electrical mathematical modeling competition as an example.Different optimization algorithms and pre-diction models are compared.The simulation results show that the model has faster convergence speed and higher prediction ac-curacy,which verifies the validity and practicability of the proposed model.

convolutional neural networklong and short-term memory networkshort-term load forecastingcorrelation anal-ysisant lion optimization algorithm

杨超、王兴

展开 >

国网西藏电力有限公司,西藏,拉萨 850000

河海大学,能源与电气学院,江苏,南京 210024

卷积神经网络 长短期记忆网络 短期负荷预测 相关性分析 蚁狮优化算法

中央高校基本科研业务费专项资金资助项目

B20020621

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(1)
  • 13