首页|基于EMD和Hilbert谱的风电机组滚动轴承故障诊断方法研究

基于EMD和Hilbert谱的风电机组滚动轴承故障诊断方法研究

扫码查看
滚动轴承是风电机组传动系统的关键零部件,恶劣的服役工况导致其故障率比较高,且故障所造成的经济损失比较大,对风电机组滚动轴承故障诊断具有重要的现实意义.针对传统包络谱分析在复杂故障诊断中的局限性,联合EMD和Hilbert谱提出了滚动轴承故障诊断的新方法.对实测振动信号进行小波分解得到高频系数,并对高频系数进行Hilbert变换,得到包络信号.将包络信号进行EMD分解,计算各IMF分量的瞬时频率,结合故障频率选择有用的IMF分量,最终得到用于故障诊断的局部Hilbert边际谱.将该方法应用于实测风电机组滚动轴承外圈和内圈故障振动信号分析中,其在提取滚动轴承故障频率方面的性能优于传统包络谱分析法.
Research on Fault Diagnosis Method of Wind Turbine Rolling Bearing Based on EMD and Hilbert Spectrum
Rolling bearing is a key component of wind turbine drive system.The poor service conditions lead to its high failure rate and large economic loss.It is of important practical significance for wind turbine rolling bearing fault diagnosis.Aiming at the limitation of traditional envelope spectrum analysis in complex fault diagnosis,a new method of rolling bearing fault diagno-sis is proposed by combining EMD and Hilbert spectrum.The measured vibration signal is decomposed by wavelet to obtain the high-frequency coefficient,and the high-frequency coefficient is transformed by Hilbert transform to obtain the envelope signal.The envelope signal is decomposed by EMD,the instantaneous frequency of each IMF component is calculated,and the useful IMF component is selected combined with the fault frequency.The local Hilbert marginal spectrum for fault diagnosis is ob-tained.This method is applied to the fault vibration signal analysis of the outer ring and inner ring of the rolling bearing of the wind turbine.Its performance in extracting the fault frequency of the rolling bearing is better than the traditional envelope spec-trum analysis method.

EMD decompositionlocal Hilbert spectrumenvelope analysiswind turbinerolling bearing

李鹏飞、闫佳、左蓬、苏伟

展开 >

河北新天科创新能源技术有限公司,河北,张家口 075000

EMD分解 局部Hilbert谱 包络分析 风电机组 滚动轴承

河北省科技厅创新指导项目

20HB012X02

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(1)
  • 13