首页|GIS空间数据支持下配网拓扑结构优化方法研究

GIS空间数据支持下配网拓扑结构优化方法研究

扫码查看
针对传统配网拓扑结构故障率高、执行时间长等不足,为了提高配网结构稳定性与执行速率,研究一种基于GIS空间数据的配网拓扑结构优化方法.采集配网设备线路实际空间位置与电气性能参数,转化为GIS空间结构数据,构建GIS空间数据配网模型.基于k-means算法对配网数据进行聚类,提取优化数据集进行区域划分,利用最小路径法缩短配网执行结构,根据配网负荷分布对覆盖区域等效拓扑结构进行简化,精准改进配网拓扑结构的负荷性能,降低配网结构运行故障率.通过实验证明,经过GIS空间数据优化后的配网综合故障率降低到7%,单位执行步数低于2000步,执行时间比传统结构提高了近90%,使优化后的偏位拓扑结构更加稳定,执行效率更高.
Research on Optimization Method of Distribution Network Topology Structure Supported by GIS Spatial Data
Aiming at the shortcomings of the traditional distribution network topology,such as high failure rate and long execu-tion time.In order to improve the structural stability and execution speed of the distribution network,an optimization method of the distribution network topology based on GIS spatial data is studied.The method collects the actual spatial location and e-lectrical performance parameters of equipment lines,converts them into GIS spatial structure data,and constructs a GIS spatial data distribution network model.Based on the k-means algorithm,it clusters the data of the distribution network,extracts the optimal dataset for region division,uses the minimum path method to shorten the execution structure of the distribution net-work,simplifies the equivalent topology structure of the coverage area according to the distribution network load distribution,accurately improves the load performance of the distribution network and reduces the operational failure rate of the distribution network structure.Through experiments,it has been proven that the comprehensive failure rate of the distribution network op-timized by GIS spatial data has been reduced to 7%,with a unit execution step count of less than 2000 steps and an execution time improvement of nearly 90%compared to traditional structures,which makes the optimized offset topology structure more stable and higher execution efficiency.

GIS technologyspatial datatopological structuredistribution network optimizationk-means algorithm

薛溟枫、毛晓波

展开 >

国网江苏省电力有限公司无锡供电分公司,江苏,无锡 214000

GIS技术 空间数据 拓扑结构 配网优化 k-means算法

城区用户与电网供需友好互动系统

2016YFB0901100

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(1)
  • 15