首页|基于改进深度学习的开关柜局部放电检测与故障识别

基于改进深度学习的开关柜局部放电检测与故障识别

扫码查看
针对传统开关柜局部放电谱图提取需要依赖专家经验而缺乏泛化能力的问题,提出一种基于改进深度置信网络(DBN)—长短期记忆(LSTM)的开关柜局部放电检测与故障识别模型.该模型综合了 DBN直接自主提取样本全局有效特征信息和LSTM善于挖掘特征图谱时域特征的优势,并采用Dropout技术降低DBN过拟合影响,以提高模型的泛化能力.结合四种典型开关柜局部放电模型的缺陷谱图对所提模型进行性能测试,并与其他算法进行对比,结果表明:所提算法对开关柜的故障识别具有良好的效果,综合故障准确率达到97%,所提模型的整体识别性能均优于单一 DBN和LSTM以及DBN-LSTM模型.
Partial Discharge Detection and Fault Identification of Switchgear Based on Improved Deep Learning
Aiming at the problem that traditional switchgear partial discharge statistical feature extraction needs to rely on ex-pert experience and lack generalization ability,a switchgear partial discharge detection and fault identification model based on improved DBN-LSTM deep learning is proposed.In this model,the deep belief network(DBN)can directly and autonomously extract the global effective feature information of the sample and the long short-term memory network(LSTM)is good at min-ing the time domain information of the statistical feature and the Dropout technology is used to reduce the influence of DBN overfitting.It improves the generalization ability of the model.Combined with the defect spectrum of four typical switchgear partial discharge models,the performance of the proposed model is tested,and compared with other algorithms,the results show that the proposed algorithm has a good effect on the fault identification of switchgear,and the comprehensive fault accura-cy rate reaches 97%,the overall recognition performance of the proposed model is better than the single DBN and LSTM and DBN-LSTM models.

deep learningswitchgearpartial discharge detectionDBN-LSTMfault identification

何明、佘乐欣、严铿博、李思尧、黄煜伟、刘晓松

展开 >

深圳供电局有限公司罗湖供电局,广东,深圳 518000

深度学习 开关柜 局部放电检测 DBN-LSTM 故障识别

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(1)
  • 11