首页|基于小波包迁移学习的轴承故障诊断方法研究

基于小波包迁移学习的轴承故障诊断方法研究

扫码查看
针对传统轴承故障诊断不仅需要人为先验知识,还存在变工况轴承分类准确率低下的问题,提出一种基于小波包迁移学习轴承故障诊断的方法(WPT-1DCNNMM).将轴承数据(源域和目标域)通过四层小波包分解成不同频率尺度的信号分量,再将分解后的信号分量送入一维卷积神经网络(1DCNN)中提取深度故障特征.通过多核最大平均差异(MK-MMD)度量源域与 目标域之间的距离,完成轴承故障分类.在凯斯西储大学轴承数据集对提出的方法进行验证,实验结果表明,所提出的方法不仅能够有效提取轴承故障特征,而且相较于其他分类模型具有更高的变工况轴承分类准确率.
Research on Bearing Fault Diagnosis Method Based on Wavelet Packet Transfer Learning
Aiming at the problem that traditional bearing fault diagnosis not only requires human prior knowledge but also has low bearing classification accuracy under variable working conditions,a bearing fault diagnosis method based on wavelet packet transfer learning(WPT-1DCNNMM)is proposed.The bearing data(source domain and target domain)are decomposed into signal components of different frequency scales through four-layer wavelet packets.The decomposed signal components are sent to a one-dimensional convolutional neural network(1DCNN)for extraction deep fault features.The distance between the source domain and the target domain is measured by multi kerner-maximum mean discrepancy(MK-MMD)to complete bearing fault classification.The proposed method is verified on the bearing dataset of Case Western Reserve University.The experi-mental results show that the method can not only effectively extract the bearing fault features,but also has a higher classifica-tion accuracy of bearings under variable working conditions than other classification models.

failure diagnosiswavelet packet decompositiontransfer learningmulti kerner-maximum mean discrepancy

郭传清、李申申、黄璜、徐磊、韩雪华、任贺贺

展开 >

兖矿能源集团股份有限公司济宁二号煤矿,山东,济宁 272000

兖矿能源集团股份有限公司山东煤炭科技研究院分公司,山东,济南 250000

故障诊断 小波包分解 迁移学习 多核最大平均差异

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(1)
  • 9