首页|基于神经网络的智能电网稳定性预测模型研究

基于神经网络的智能电网稳定性预测模型研究

扫码查看
目前,在智能电网稳定性预测方面,机器学习发挥着越来越重要的作用.鉴于传统预测模型存在多种假设和预测不精确的缺点,提出了一种基于神经网络的智能电网稳定性预测模型,该模型以前馈神经网络为基础,采用考虑反应时间的阻尼最小二乘法对数据进行训练,将消耗、生产的有功功率和弹性系数作为输入变量,对表征智能电网稳定性的特征根实部进行预测,模型在隐藏层的激活函数采用双极性S函数(tansig),输出层的激活函数采用线性传递函数(purelin).模型采用均方误差(MSE)和决定系数(R-Square,R2)对预测模型精确性和有效性进行评估.预测结果表明,该预测模型在训练和测试阶段均具有足够准确的预测性能,在预测范围具有极低MSE值和极大R2值,对不同潮流下智能电网稳定性的预测表现出了极高的准确性.
Research on Stability Prediction Model of Smart Grid Based on Neural Network
At present,machine learning plays a more and more important role in smart grid stability prediction.In view of the shortcomings of many assumptions and inaccurate prediction in the traditional machine learning model,this paper proposes a smart grid stability prediction model based on neural network.The model uses the damped least square method to consider the reaction time to train the data,which takes consumed and produced power and elasticity coefficient as the input variables,to predict the network stability as the output variable.The activation function of the hidden layer is tansig,and the activation function of the output layer is purelin.In this paper,mean square error(MSE)and R-square(R2)are used to evaluate the ac-curacy and effectiveness of the prediction model.The prediction results show that the prediction model has enough accurate pre-diction performance in the training and testing stages,which has very low MSE value and maximum R2 value in the prediction range.

neutral networksmart griddamped least-squares methodactivation functionstability prediction

杨熠鑫

展开 >

国网宁夏电力有限公司中卫供电公司,宁夏,银川 755000

神经网络 智能电网 阻尼最小二乘法 激活函数 稳定性预测

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(1)
  • 15