首页|基于SSA-BPNN的信息化系统故障诊断

基于SSA-BPNN的信息化系统故障诊断

扫码查看
为了提高信息化系统故障诊断的精度,避免BP神经网络陷入局部最优并且提高收敛速度,提出一种麻雀搜索算法改进BP神经网络的信息化故障诊断模型.运用麻雀搜索算法优化选择BP神经网络的初始权值和阈值.与PSO-BPNN和GA-BPNN相比,SSA-BPNN进行信息化系统故障诊断具有更强的寻优能力和故障诊断精度,为信息化系统故障诊断提供了新的方法.
Information System Fault Diagnosis Based on SSA-BPNN
In order to improve the accuracy of information system fault diagnosis,avoiding BP neural network fall into local op-timization and improve the rate of convergence,an information fault diagnosis model based on BP neural network improved by sparrow search algorithm is proposed.Sparrow search algorithm is applied to optimize the initial weights and thresholds of BP neural network.Compared with PSO-BPNN and GA-BPNN,SSA-BPNN has better optimization ability and fault diagnosis pre-cision,providing a new method for fault diagnosis of information system.

neural networksparrow search algorithminformation systemfault diagnosis

董贇、邓卓茗

展开 >

广西电网有限责任公司信息中心,广西,南宁 530023

神经网络 麻雀搜索算法 信息化系统 故障诊断

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(1)
  • 12