首页|面向典型作业场景的现场安全监管数据库风险识别方法

面向典型作业场景的现场安全监管数据库风险识别方法

扫码查看
针对现场安全监管数据库风险识别错误率较高、识别效率较低的问题,提出面向典型作业场景的现场安全监管数据库风险识别方法.针对典型作业场景现场安全监管数据库中存在的异常数据,根据异常数据类型,分别采用移动平均线法和AR模型法对数据进行预处理;通过灰色关联聚类算法提取数据风险特征;引入树突状细胞算法,将MAP作为抗原综合评价指标实现现场安全监管数据库风险识别.实验结果表明,所提方法风险识别错误率更低、识别效率更高,具有较好的应用价值.
Risk Identification Method of On-site Safety Supervision Database for Typical Operation Scenarios
In response to the high error rate and low identification efficiency of on-site safety supervision database risk identifica-tion,a risk identification method of on-site safety supervision database for typical operation scenarios is proposed.Aiming at the abnormal data in the on-site safety supervision database of typical operation scenarios,the moving average method and AR model are used to preprocess the data according to the type of abnormal data.The grey correlation clustering algorithm is used to extract data risk features.The dendritic cell algorithm is introduced,and MAP is used as an antigen comprehensive evalua-tion index to achieve risk identification in the on-site safety supervision database.The experimental results show that the pro-posed method has a lower risk identification error rate and higher recognition efficiency,and has good application value.

typical operation scenarioon-site safety supervisiondatabaserisk identificationdendritic cell algorithm

王天师

展开 >

广东电网有限责任公司中山供电局,广东,中山 528400

典型作业场景 现场安全监管 数据库 风险识别 树突状细胞算法

广东省中国南方电网有限责任公司科技项目

GDKJXM20190028

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(2)
  • 12