首页|基于数据挖掘的智能电网需求预测

基于数据挖掘的智能电网需求预测

扫码查看
随着电力需求的日益增加,获得能源效率也变得越来越重要.因此,开发准确的需求预测方法对于通过有效的系统运行确保能源效率至关重要.为此提出一种基于数据挖掘技术的需求预测方法.该方法是k-均值聚类、贝叶斯分类和ARI-MA的结合.以前的大多数研究都试图从供应侧管理的角度来解决这一问题,但提出的预测模型适用于消费侧.实验中,对某市的实际荷载剖面进行案例研究.结果表明,提出的方法的最小错误率接近0.3,可以满足实际需求.
Smart Grid Demand Forecasting Based on Data Mining
With the increasing demand for electricity,obtaining energy efficiency becomes more and more important.Therefore,the development of accurate demand forecasting methods is very important to ensure energy efficiency through effective system operation.A demand forecasting method based on data mining technology is proposed.This method combines k-means cluste-ring,Bayesian classification and ARIMA.Most previous studies have tried to solve this problem from the perspective of supply side management,but the prediction models proposed are suitable for the consumer side.In the experiment,the actual load profile of a city is studied.The results show that the minimum error rate of the proposed method is nearly 0.3,which can meet the actual needs.

demand forecastingsmart gridpattern clusteringclassification algorithmneural networkdata mining

杨民京、孟子杰、李超、傅伟豪、梁梓均

展开 >

广东电网有限责任公司电力调度控制中心,广东,广州 510600

需求预测 智能电网 模式聚类 分类算法 神经网络 数据挖掘

广东电网公司科技项目

GDKJXM20198558

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(2)
  • 11