首页|基于PCA-PIO-FLN的管道剩余寿命预测

基于PCA-PIO-FLN的管道剩余寿命预测

扫码查看
为了准确预测腐蚀管道剩余寿命,提高预测精度,提出基于主成分分析(PCA)和鸽群优化算法(PIO)的快速学习网.(FLN)预测模型,用于管道剩余寿命预测.通过PCA提取关键腐蚀因素,降低预测指标维度;采用PIO对FLN的输入权值及隐层阈值进行优化,提升预测精度.为检验模型效能,以某注水管道的50组数据为例进行研究,并与FLN、BP两组模型对比分析,结果表明:PCA-PIO-FLM模型的MAE、MAPE、RMSE分别为0.036、0.553、0.0014,均优于对比模型,证明了所构建模型能够准确预测注释管道剩余寿命.
Pipeline Remaining Life Prediction Based on PCA-PIO-FLN
In order to accurately predict the remaining life of a corroded pipeline and improve the prediction accuracy,a fast learning network(FLN)prediction model based on principal component analysis(PCA)and pigeon swarm optimization(PIO)is proposed for predicting the remaining life of the pipeline.Key corrosion factors are extracted by PCA to reduce the dimension of prediction indicators,and PIO is used to optimize the input weights and hidden layer thresholds of FLN to improve the pre-diction accuracy.In order to test the effectiveness of the model,50 sets of data from a water injection pipeline are taken as an example,and are compared with the FLN and BP models.The results show that the MAE,MAPE and RMSE of the PCA-PIO-FLM model are 0.036,0.553,0.0014,which are better than the comparison models.The results prove that the construc-ted model can accurately predict the remaining life of the annotation pipeline.

corroded pipelineremaining life predictionprincipal component analysispigeon flock optimization algorithmfast learning network

霍奕宇

展开 >

陕西国防工业职业技术学院,机械工程学院,陕西,西安 710300

腐蚀管道 剩余寿命预测 主成分分析 鸽群优化算法 快速学习网

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(2)
  • 13