首页|基于现金流量的财务风险预警系统的设计与研究

基于现金流量的财务风险预警系统的设计与研究

扫码查看
为了提高当前财务风险预警的精确度和有效性,研究基于现金流量理论,建立了基于极限学习机(ELM)算法的企业财务风险预警模型.通过熵值法对现金流量指标进行筛选,并将指标数据分为测试集与训练集.采用极限学习机分别进行训练和测试,经调整好的模型应用于财务风险预警.结果表明,研究提取的11项指标可从多方面反映企业的财务状况.研究模型的平均绝对误差最小,为4.21%.研究模型的分类精度始终较传统算法模型高,当特征数量为10时,研究算法的分类精度最高为91%.研究设计的财务预警系统性能表现较好,具有一定的应用价值.
Design and Research of Financial Risk Early Warning System Based on Cash Flow
To improve the accuracy and effectiveness of current financial risk early warning,an enterprise financial risk early warning model based on extreme learning machine(ELM)algorithm is established based on cash flow theory.The index of cash flow is screened by entropy method,and the index data are divided into test set and training set.Extreme learning machine is used for training and testing,and the adjusted model is applied to financial risk early warning.The results show that the 11 indicators extracted from the study can reflect the financial status of enterprises from many aspects.The average absolute error of the research model is the smallest,4.21%.The classification accuracy of the research model is always higher than that of the traditional algorithm model.When the number of features is 10,the classification accuracy of the research algorithm is as high as 91%.The financial early warning system designed has good performance and has certain application value.

cash flowfinanceriskearly warning

卢珊、刘天泽

展开 >

首都医科大学附属北京友谊医院,北京 100050

现金流量 财务 风险 预警

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(2)
  • 11