首页|基于大数据的多信息源线路跳闸故障识别方法

基于大数据的多信息源线路跳闸故障识别方法

扫码查看
针对导致线路跳闸故障识别结果相对误差较高,线路跳闸故障的判断过程冗余的问题,提出基于大数据的多信息源线路跳闸故障识别方法.针对输电线路工作特点建立输电线路模型,采集电流信息,建立多信息源融合机制;应用大数据技术分析输电线路内混沌变量,识别特征数据中的异常数据,控制冗余变量;汇总多信息源线路异常数据,采用模糊聚类分类器完成跳闸故障识别.仿真实验结果表明,该方法应用后,相比正常状态线路电流幅值出现大幅度降低,其跳闸故障识别平均相对误差降低了 13%与22%.
Multi-information Source Line Trip Fault Identification Method Based on Big Data
Aiming at the problems of high relative error of line trip fault identification results and redundant judgment process of line trip fault,a multi-information source line trip fault identification method based on big data is proposed.According to the working characteristics of transmission line,a transmission line model is established,the current information is collected,and the multi-information source fusion mechanism is established.Using big data technology,we analyze chaotic variables in trans-mission lines,identify abnormal data in characteristic data and control redundant variables.The abnormal line data from multi-ple information sources are summarized,and the fuzzy clustering classifier is used to complete the tripping fault identification.The simulation results show that compared with the normal state,the line current amplitude is greatly reduced,and the average relative errors of trip fault identification are reduced by 13%and 22%,respectively.

big datamulti-information sourceline faulttripping operationfault identification

戴月明、王京生、童雄敏

展开 >

国网浙江省电力有限公司永康市供电公司,浙江,永康 321300

永康市光明送变电工程有限公司,浙江,永康 321300

大数据 多信息源 线路故障 跳闸 故障识别

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(2)
  • 10