首页|基于深度学习的异常行为监测系统与算法设计

基于深度学习的异常行为监测系统与算法设计

扫码查看
为了监控场所中人物的异常行为并能自动发出报警信息,设计基于深度学习的嵌入式实时异常行为监测系统.系统通过摄像头采集图像信息后,在嵌入式设备用姿态检测网络检测人体的关键点坐标,并用深度森林算法对关键点坐标进行异常行为分类.当监测出异常行为后,将信息发送到服务器端,再由服务器端通知用户端.相对于人工监控以及使用服务器端计算神经网络的智能监控系统,该系统的成本更低,对网络的传输速度和稳定性需求更小.实验结果表明,该系统可以有效实时检测暴力、倒地等异常行为,并自动发送报警信息.
An Abnormal Behavior Monitoring System with the Algorithm Design Based on Deep Learning
To monitor abnormal behavior of people in public places and send alarm information automatically,an embedded real-time abnormal behavior monitoring system based on deep learning is designed.The system detects the key point coordinates of human body by pose detection network in the embedded equipment,after the image information is captured by the camera,and classifies the key point coordinates for abnormal behavior with deep forest algorithm.When the abnormal behavior is moni-tored,the information is sent to the server-side,and the server-side notifies the user-side.Compared with manual monitoring and intelligent monitoring systems using server-side computing neural network,this system is less expensive and requires less transmission speed and stability of the network.Experimental results show that the system can effectively detect abnormal be-haviors such as violence and falling in real time and send alarm messages automatically.

deep learningembedded systembehavior detectionintelligent monitoringdeep forest algorithm

李卓青、贾振堂

展开 >

上海电力大学,电子与信息工程学院,上海 201306

深度学习 嵌入式系统 行为检测 智能监控 深度森林算法

国家自然科学基金

62105196

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(3)
  • 11