首页|一种基于自注意生成对抗网络的交通流缺失数据修复方法研究

一种基于自注意生成对抗网络的交通流缺失数据修复方法研究

扫码查看
针对目前交通流缺失数据修复时存在效率低、性能差问题,提出一种基于自注意机制的生成对抗性网络模型.为了使模型能够充分利用交通数据流中包含的时间戳和周期性信息,采用 自注意机制和位置编码提升模型学习性能.为提升模型训练性能,提出利用谱归一化和时间尺度更新规则加快学习学习效率.实验结果表明,与基于KNN、HA和GAN模型相比,所提模型综合指标性能最优,对于高缺失率场景下交通流数据具有较好的修复效果.
Research on a Repair Method of Traffic Flow Missing Data Based on Self-attention Generative Adversarial Network
A generative adversarial network model integrating self-attention mechanism is proposed to address the issues of low efficiency and poor performance in traffic flow missing data repair.In order to fully utilize the timestamp and periodic informa-tion contained in the traffic data flow,self-attention mechanism and location coding are adopted to improve the model learning performance.To improve the model training performance,spectral normalization and time scale updating rules are proposed to accelerate learning efficiency.The experimental results show that,compared with KNN,HA and GAN models,the proposed model has the best comprehensive index performance,and has a good repair effect for traffic flow data in high miss rate scenari-os.

traffic datadata missingdata repairattention mechanismgenerative adversarial network

陈婧、段明磊、金照奇、浦大勇、赵宾

展开 >

云南公路联网收费管理有限公司,云南,昆明 650500

交通数据 数据缺失 数据修复 注意力机制 生成对抗网络

云南省数字交通重点实验室项目

202205AG070008

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(3)
  • 8