首页|一种基于图卷积网络电网审计知识推荐模型

一种基于图卷积网络电网审计知识推荐模型

扫码查看
随着电网企业在线培训审计业务需求的大量增加,学习者无法有效选择学习对象,因此导致网络培训效果不佳.为此,提出一种基于图卷积网络的电网审计知识推荐模型.基于电网审计业务构建在线学习知识图;通过基于注意力机制的图卷积网络放大更新图表示时的信息,消除噪声影响;基于密集特征的操作感知网络捕捉隐含的学习者交互行为,进而为其提供电网审计培训知识推荐.实验分析表明,提出的模型相比CompGCN、DeepFM、DCN方法在推荐准确度、F1分数等方面具有一定优势.
A Knowledge Recommendation Model for Power Grid Audit Based on Graph Convolutional Network
The demands for online training and auditing business of power grid enterprises are creasing,but the trainees can not effectively choose the learning objects,and this results in poor network training effect.To this end,this paper proposes a knowledge recommendation model for power grid auditing based on graph convolutional networks.An online learning knowl-edge graph is constructed based on the power grid audit business.The information in updating the graph representation is en-larged through the attention mechanism-based graph convolutional network to eliminate the influence of noise.The operation-aware network based on dense features captures implicit learners with interactive behavior,and provides them with power grid audit training knowledge recommendation.The experimental analysis shows that the model proposed has certain advantages compared with CompGCN,DeepFM and DCN methods in terms of recommendation accuracy and F1 score.

audit businessattention mechanismgraph convolutional networkknowledge recommendation

王威、邬奕强、康晓燕

展开 >

国网上海市电力公司,上海 200000

审计业务 注意力机制 图卷积网络 知识推荐

&&

52090020007N

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(3)
  • 12