首页|针对电网审计业务应用的网络攻击检测

针对电网审计业务应用的网络攻击检测

扫码查看
在打造审计云新模式的过程中,充分利用智能化手段对电网审计业务应用的网络安全漏洞进行有效检测、保障网络和信息安全是电网审计信息革命的重要举措.针对目前电网审计业务遇到的网络攻击检测问题,提出一种基于深度卷积神经网络的攻击检测策略.对攻击数据进行预处理,通过词频提取特征,使用编辑距离算法选择特征.将微积分概念引入蚯蚓算法,利用改进的分数蚯蚓算法对深度卷积神经网络进行训练,基于选择的特征完成网络攻击检测.通过实验,所提方法可以对网络攻击进行有效检测,且具有较高的准确率.
Network Attack Detection in the Power Grid Audit Business Application
In the process of building a new audit cloud model,making full use of intelligent means to effectively detect network security vulnerabilities of audit business platforms and ensuring network and information security is an important measure for the power grid audit information revolution.Aiming at the current network attack detection problem of power grid audit busi-ness,this paper proposes an attack detection strategy based on deep convolutional neural network.The attack data are prepro-cessed,features are extracted by applying word frequency,and features are selected using an edit distance algorithm.This pa-per introduces the concept of fractional calculus into the earthworm algorithm,uses the improved fractional earthworm algo-rithm to train the deep convolutional neural network,and performs network attack detection and classification based on the se-lected features.It is verified by experiments that the method proposed in this paper can effectively detect network attacks and has a high accuracy.

auditinformation securitynetwork attackearthworm algorithmconvolutional neural network

孙勇、刘高原

展开 >

国网上海市电力公司,上海 200000

审计 信息安全 网络攻击 蚯蚓算法 卷积神经网络

&&

52090020007N

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(3)
  • 10