首页|基于大型工控网络的恶意代码检测技术研究

基于大型工控网络的恶意代码检测技术研究

扫码查看
目前,针对工业控制系统(ICS)网络安全的途径主要是基于防火墙、数据二极管和其他入侵防御方法,这可能不足以应对那些日益增长的、来自积极攻击者的网络威胁.为了提高ICS的网络安全性,提出一种基于行为特征分析的恶意代码检测方法,该方法综合利用网络流量数据、主机系统数据以及测量的过程参数,实现对恶意代码的精准检测.详细分析ICS的业务特征以及网络拓扑,剖析针对ICS的网络攻击技术.所提方法通过对ICS的原始日志信息以及流量信息进行提取,利用基于空间分析和时间分析相互融合的恶意代码检测方法对ICS行为数据进行异常检测.实践表明,所提方法可以有效发现隐藏在网络中的恶意代码攻击行为.
A Study of Malicious Code Detection Technology Based on Large-scale Industrial Networks
The approaches to industrial control system(ICS)network security are mainly based on firewalls,data diodes and other intrusion prevention methods at present,and these may not be sufficient to address the growing network threats from ac-tive attackers.In order to improve the network security of ICS,a malicious code detection method based on behavior feature a-nalysis is proposed,which comprehensively utilizes network traffic data,host system data,and measured process parameters to achieve accurate detection of malicious code.This paper analyzes the service characteristics and network topology of ICS in de-tail,and analyzes the network attack technology against ICS.The proposed method extracts the original log information and traffic information of ICS,and uses the malicious code detection method based on the integration of spatial analysis and tempo-ral analysis to detect the anomaly of ICS behavior data.Practice shows that the method proposed in this paper can effectively find malicious code attacks hidden in the network.

industrial control systemmalicious code detectionspatial analysistime analysis

樊凯、毕凯峰

展开 >

中国南方电网有限责任公司,广东,广州 510000

南方电网数字电网研究院股份有限公司,广东,广州 510000

工业控制系统 恶意代码检测 空间分析 时间分析

中国南方电网公司科技项目

ZBKJXM20190077

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(3)
  • 8