首页|基于关键点与迁移学习的用户用电能耗动态预测算法

基于关键点与迁移学习的用户用电能耗动态预测算法

扫码查看
用户用电能耗数据具有时变性特点,导致用户用电能耗动态预测准确性较低.因此,设计一个基于关键点与迁移学习的用户用电能耗动态预测算法.应用迁移学习模型挖掘数据,采用关键点方法计算两个数据的余弦相似度,计算完成后融合数据,进行数据降噪与无量纲化处理,建立变分模型,分解采集的信号,将其分解为若干个波动规律的简单信号分量.在此基础上,结合支持向量回归方法与PSO算法组,实现用户用电能耗动态预测.实验结果表明,所提出的预测方法在电锅炉电能消耗、空调电能消耗、工作日电能消耗以及非工作日的电能消耗预测上,都具有较高的准确性.
Dynamic Prediction Algorithm of User Power Consumption Based on Key Points and Transfer Learning
Due to the time-varying characteristics of user power consumption data,the accuracy of user power consumption dy-namic prediction is low.Therefore,a user power consumption dynamic prediction algorithm based on key points and migration learning is designed.The transfer learning model is used to mine the data,and the key point method is used to calculate the co-sine similarity of the two data.After the calculation,the data are fused and denoised,and are processed by dimensionless.A variational modal is established,the collected signal is decomposed into several simple signal components of wave motion law.Combined with support vector regression method and PSO algorithm,the dynamic prediction of user power consumption is real-ized.The experimental results show that the proposed prediction method has high accuracy in the prediction of electric energy consumption of electric boiler,air conditioning,working and non-working days.

key pointtransfer learningpower consumptiondynamic predictiontime seriesdecomposition

苟亮、朱帕尔·努尔兰、杨霞、马倩、迪力尼亚·迪力夏提

展开 >

国网新疆电力有限公司信息通信公司,新疆,乌鲁木齐 830002

关键点 迁移学习 用电能耗 动态预测 时间序列 分解

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(3)
  • 15