首页|基于大数据跨平台的半结构化实时数据采集技术

基于大数据跨平台的半结构化实时数据采集技术

扫码查看
针对传统数据采集技术的功能单一、时钟频率低,满足不了现在发展需求的问题,设计半结构化实时数据采集系统,采用FPGA进行并行数据处理,并采用嵌套式乒乓缓存的方式进行数据缓存,实现了实时数据处理和FLASH存储,增强了数据传输和存储的可靠性及稳定性.设计半结构化实时数据远程采集系统,采用REMOTE进程,通过火灾大数据算法模型提高故障诊断能力.实验表明,所提系统在对20 000条数据进行采集时所花费的时间最少为22 s,并且采集的数据精确度最高达到了 98%,火灾故障诊断速度更快、准确率更高,大大提升了对火灾故障的诊断效率和应对能力.
Semi-structured Real-time Data Acquisition Technology Based on Big Data Cross-platform
Aiming at the problem of the single function and low clock frequency of traditional data acquisition technology cannot meet the needs of current development,this paper designs a semi-structured real-time data acquisition system.It uses FPGA for parallel data processing,and adopts the nested ping-pong cache method for data caching,which realizes real-time data pro-cessing and FLASH storage,and enhance the reliability and stability of data transmission and storage.The remote collection system for semi-structured real-time data is designed.The REMOTE process is adopted to improve the fault diagnosis ability through the fire big data algorithm model.Experiments show that the proposed system takes at least 22 s to collect 20 000 pieces of data,the accuracy of the collected data reaches up to 98%.The fire fault diagnosis speed is faster and the auuracy is higher,which greatly improves the diagnosis efficiency and response ability of fire fault.

data acquisitionbig dataFPGAsemi-structuredremote acquisitionfault diagnosis

赵小凡、徐炫东、胡璇

展开 >

广东电网有限责任公司广州供电局,广东广州 510610

数据采集 大数据 FPGA 半结构化 远程采集 故障诊断

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(3)
  • 12