首页|面向大数据平台调度优化的通信网络故障诊断

面向大数据平台调度优化的通信网络故障诊断

扫码查看
针对通信网络故障诊断能力滞后,导致网络通信瘫痪,致使消息滞后等问题,提出通信网络故障识别系统,采用数字模拟技术和生成对抗网络算法(GAN)的优化组合来分析系统中实时存在的网络故障状况,利用数字模拟技术对真实物理数据进行交互,对通信网络数据进行虚拟化数据建模,将所获取的网络运行数据利用GAN算法进行分析处理,从而达到对网络进行故障识别的目的.试验结果表明,通过该系统技术检测出的数据精准度高达91.75%以上,表明该研究在通信网络故障识别的正确性.
Communication Network Fault Diagnosis for Scheduling Optimization of Big Data Platform
In view of the time delay of communication network fault diagnosis,a communication network fault identification sys-tem is proposed.The optimized combination of digital simulation technology and GAN algorithm is used to analyze the real-time network fault conditions in the system.The digital simulation technology is used to store the real physical data interactively,and the communication network data are virtualized data modeling.The obtained network operation data are analyzed and pro-cessed using the generative adversarial network(GAN)algorithm,so as to achieve the purpose of network fault identification.The experimental results indicate that the accuracy of the data detected through this system technology is over 90%,indicating the correctness of this study in identifying communication network faults.

digital analog technologyGAN algorithmdata modelingfault identification

罗鹏、李景文

展开 >

中国移动通信集团广西有限公司,广西,南宁 530022

数字模拟技术 GAN算法 数据建模 故障识别

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(3)
  • 1
  • 14