首页|基于改进深度学习的主动式通信网络入侵行为自适应识别算法

基于改进深度学习的主动式通信网络入侵行为自适应识别算法

扫码查看
针对外界参数变化较大时会严重影响识别准确率的问题,设计一种基于改进深度学习的主动式通信网络入侵行为 自适应识别算法.归一化主动式通信数据,将卷积神经网络和BGRU进行结合,构建一个端到端检测攻击的改进型的循环神经网络,优化激活函数与逻辑回归分类器,稳定且自适应地识别主动式通信网络入侵行为.实验结果表明,所提算法在卷积核大小和学习率改变的情况下仍能保持较高的识别准确性,主动式通信网络入侵行为的识别结果具有自适应性.
An Adaptive Recognition Algorithm for Intrusion Behavior in Active Communication Networks Based on Improved Deep Learning
Aimed at the problem that the external parameters are sensitive and the identification accuracy is seriously affected when the parameters change greatly,an adaptive identification algorithm of active communication network intrusion behavior based on improved deep learning is designed.We normalize the active communication data,combine the convolutional neural network and BGRU,construct an improved cyclic neural network for end-to-end attack detection,optimize the activation func-tion and logistic regression classifier,and identify the intrusion behavior of active communication network stably and adaptive-ly.Experimental results show that the proposed algorithm can still maintain high recognition accuracy when the convolution kernel size and learning rate change,and the recognition results of active communication network intrusion are adaptive.

improved deep learningnetwork intrusion detectioncommunication network intrusionadaptive identificationhybrid convolutional neural network

伍均玺、林峰、高红云

展开 >

河北省财政厅一体化运维中心,河北,石家庄 050000

河北网信智安信息技术有限公司,河北,石家庄 050000

改进深度学习 网络入侵检测 通信网络入侵 自适应识别 混合卷积神经网络

河北省省级科技计划

20310701D

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(4)
  • 15