首页|基于ST-CNN的城轨车辆制动系统通信故障预测方法

基于ST-CNN的城轨车辆制动系统通信故障预测方法

扫码查看
为了提高城轨车辆制动系统的行车安全性,降低交通事故的发生概率,提出一种基于ST-CNN的城轨车辆制动系统通信故障预测方法.分析时空卷积神经预测模型框架结构,建立时空序列矩阵,获取通信数据的正常模式和变化趋势.建立通信特征提取卷积神经网络,提取告警类型的通信特征,并实施降维处理.通过池化操作量化不同告警类型通信特征,采用全连接层转换不同告警特征向量值,完成制动系统通信故障预测.实验结果表明,所提方法的F1值总体稳定在0.97以上,预测时间在0.5 s以下,预测值与实际值高度相似,可以满足城市轨道交通的实际需求.
Communication Fault Prediction Method for Braking System of Urban Rail Vehicles Based on ST-CNN
In order to improve the driving safety of the braking system of urban rail vehicles and reduce the probability of traffic accidents,a communication fault prediction method for the braking system of urban rail vehicles based on ST-CNN is proposed.The paper analyzes the framework structure of the spatiotemporal convolutional neural prediction model,establishes a spatio-temporal sequence matrix,and obtains the normal patterns and changing trends of communication data.It establishes a convo-lutional neural network for communication feature extraction,extracts communication features for alarm types,and implements dimensionality reduction processing.Communication features of different alarm types are quantified through pooling operations,and a fully connected layer is used to convert different alarm feature vector values to complete communication fault prediction for the braking system.The experimental results show that the overall stability of the F1 value of the proposed method is above 0.97,and the prediction time is below 0.5 s.The predicted value is highly similar to the actual value,which can meet the actu-al needs of urban rail transit.

urban rail vehiclespatiotemporal matrixconvolutional neural networkempirical mode decompositionmapping function

赵振乾

展开 >

陕西交通职业技术学院,铁道运输学院,陕西,西安 710018

城轨车辆 时空矩阵 卷积神经网络 经验模态分解 映射函数

陕西省教育厅科研项目

22JK0286

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(4)
  • 13