首页|基于TCN的PM2.5浓度预测模型

基于TCN的PM2.5浓度预测模型

扫码查看
作为大气污染主要因素之一的可吸入颗粒物PM2.5严重影响人类的健康,受到广泛的关注.科学高效地预测PM2.5有利于人类提前做好防护措施,保护自身安全.为此设计了基于时域卷积神经网络的PM2.5浓度预测模型,选取中国环境监测总站的全国城市空气质量实时发布平台的数据,对陕西省西安市的PM2.5浓度进行了预测,并对预测结果进行分析.与长短时记忆神经网络和门控循环单元模型进行对比实验,结果表明时域卷积神经网络在预测PM2.5浓度中具有较好的性能.
PM2.5 Concentration Prediction Model Based on TCN
As one of the main factors of air pollution,PM2.5 seriously affects human health,and attracts increasing attention of human beings.Scientific and efficient prediction of PM2.5 is conducive to human protection measures in advance to protect their own safety.In this paper,a prediction model of PM2.5 concentration based on time-domain convolutional neural network is de-signed,and the PM2.5 concentration in Xi'an city of Shaanxi province is predicted by selecting data from the real-time release platform of National Urban Air Quality of China Environmental Monitoring Station,and the prediction results are analyzed.Compared with the long and short memory neural network and gated cyclic unit model,the results show that the convolutional neural network has better performance in predicting PM2.5 concentration.

PM2.5 predictiontime-domain convolutional networkrecurrent neural network

任瑛、马乐荣、夏必胜

展开 >

延安大学,数学与计算机科学学院,陕西,延安 716000

延安市红色文化大数据智能信息处理重点实验室,陕西,延安 716000

PM2.5预测 时域卷积神经网络 循环神经网络

延安大学中长期重大科研项目(十四五)延安大学产学研合作培育项目

2021ZCQ012CXY202107

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(4)
  • 10