首页|面向智能电表大数据分析的数据降维方法

面向智能电表大数据分析的数据降维方法

扫码查看
针对智能电表大数据聚类分析过程中出现的计算复杂度过大的问题,提出基于极坐标投影的数据降维方法.采用极坐标投影的方法将由电能总消耗量和峰值电能消耗量所组成的数据集映射成由极角和极径组成的投影矩阵,设计一个由电能总消耗量和峰值电能消耗量所组成的改进聚类距离度量,使用误差平方和方法确定最优的聚类数量,将该方法引入于k均值算法进行算例分析.结果表明,该降维方法能够有效提升聚类算法的性能,并降低聚类算法的计算复杂度.
Data Dimensionality Reduction Method for Smart Meter Big Data Analysis
Aiming at the problem of excessive computational complexity in the process of smart meter big data cluster analysis,a data dimensionality reduction method based on polar coordinate projection is proposed.The polar coordinate projection meth-od is used to map the data set composed of total power consumption and peak power consumption into a projection matrix com-posed of polar angle and polar diameter,and a data set composed of total power consumption and peak power consumption is designed.The improved clustering distance metric is used to determine the optimal number of clusters using the sum of squared error method.This method is introduced into the k-means algorithm for example analysis.The results show that the dimen-sionality reduction method can effectively improve the performance of the clustering algorithm and reduce the computational complexity of the clustering algorithm.

polar coordinate projectionclusteringdata dimensionality reductionk-means

何壮壮

展开 >

国网山西省电力公司,山西,太原 030025

极坐标投影 聚类 数据降维 k均值

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(4)
  • 11