首页|基于CNN-LSTM的社交媒体大数据评论文本情感元自动识别方法

基于CNN-LSTM的社交媒体大数据评论文本情感元自动识别方法

扫码查看
为了准确识别社交媒体评论文本情感,助力公众负面情绪引导,提出了基于CNN-LSTM的社交媒体大数据评论文本情感元自动识别方法.通过社交媒体大数据分类,并通过具有字典功能的Token将评论文本转换成数字列表.结合词嵌入技术得到向量列表,完成社交媒体大数据向量转换的预处理.将预处理获取的向量列表输入CNN网络,得到评论文本情感元最终局部特征值.将该值传至LSTM,通过遗忘门、输入门、输出门调节,获取评论文本情感元特征表征结果,经Softmax分类器分类后,实现情感元自动识别.实验结果表明,该方法能有效完成实验数据预处理,用文字和标签的形式标记正面、负面情感元,并准确识别情感元,间接反映社会问题,应用性较强.
CNN-LSTM-based Method for Automatic Recognition of Emotional Elements in Big Data's Comment Text on Social Media
To accurately identify the sentiment of social media comment texts and assist in guiding public negative emotions,an automatic identification method of emotional element in social media big data comment texts based on CNN-LSTM is proposed.Through the classification of social media big data,comment texts are converted into numerical lists using tokens with dictiona-ry functions.Combined with word embedding technology,a vector list is obtained to complete the preprocessing of vector con-version for social media big data.The vector list obtained through preprocessing is input into the CNN network to obtain the fi-nal local feature values of emotional element in comment texts.These values are then transmitted to the LSTM,where they are adjusted through the forget gate,input gate,and output gate to obtain the feature representation results of emotional element in comment texts.After classification by the Softmax classifier,automatic identification of emotional element is achieved.Experi-mental results show that this method can effectively complete the preprocessing of experimental data,label positive and nega-tive emotional element in the form of text and tags,and accurately identify emotional element,indirectly reflecting social issues and demonstrating strong applicability.

social media datacomment textemotional elementvector listCNN-LSTMautomatic recognition

刘丹

展开 >

大连职业技术学院(大连开放大学),辽宁,大连 116021

社交媒体数据 评论文本 情感元 向量列表 CNN-LSTM 自动识别

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(4)
  • 11