首页|基于Transformer的低压停电补全分析

基于Transformer的低压停电补全分析

扫码查看
相比于建设较为完备的高中压配电网,低压配电网具有分布广、设备运行环境恶劣、监测装置质量参差不齐等特点,使得运行过程中常出现停电事件的漏报、误报、频繁上报等问题,不断增加能源消耗成本并降低电力服务质量.依托智能电表网络架构,最终设计出一种基于深度学习的低压停电补全分析方法.总结了低压配电网的4类停电故障事件,提出深度学习模型Transformer的搭建和使用,设计出与其相关的分析系统架构,并给出可视化管理系统的使用案例.对于低压配电网的停电补全等问题,该方法为业内提供了值得参考的完整解决方案.
Complementary Analysis of Low-voltage Power Outage Based on Transformer
Compared with the relatively complete high and medium voltage distribution networks,the low-voltage distribution network has the characteristics of wide distribution,harsh equipment operating environment,and uneven quality of monitoring devices,which makes the missed alarm,false alarm and frequent power outage events often occur in the operation process.Problems such as reporting,false reporting,increase the cost of energy consumption and reduce the quality of electricity serv-ice.Relying on the smart meter network architecture,a deep learning-based low-voltage power outage completion analysis method is finally designed.The 4 types of power failure events of low-voltage distribution network are summarized,and the construction and use of the deep neural network model transformer is proposed.The related analysis system architecture is de-signed,and the use case of the visual management system is given.For problems such as power outage completion of low-volt-age distribution network,it provides a complete solution worthy of reference for the industry.

low-voltage distribution networklow-voltage power outages completiondeep learning networkintelligent man-agement system

王大鹏、张永刚、林经伟、钟佳晨

展开 >

国网内蒙古东部电力有限公司,内蒙古,呼和浩特 010020

南京农业大学,人工智能学院,江苏,南京 210095

低压配电网 低压停电事件补全 深度学习模型 智能管理系统

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(4)
  • 14