首页|基于S-UBayFS特征选择的网络流量异常检测方法

基于S-UBayFS特征选择的网络流量异常检测方法

扫码查看
研究网络流量异常检测的方法,针对传统机器学习方法的局限性,提出一种基于S-UBayFS-GRU的检测算法.该算法分为3个步骤:利用SNHA算法从大量的网络流量特征中筛选出有因果关系的特征,形成"关联链";利用"关联链"和网络安全领域知识,给特征赋值权重和侧面约束,用UBayFS算法进行特征选择,降低特征维度,提高特征质量;利用GRU循环神经网络对筛选后的特征进行学习和预测,实现网络流量异常检测.实验结果表明,提出的S-UBayFS-GRU算法在各项评价指标上均优于其他方法.
Network Traffic Anomaly Detection Method Based on S-UBayFS Feature Selection
We study the method of network traffic anomaly detection,and propose an algorithm based on S-UBayFS-GRU to improve the limitations of traditional machine learning methods.The algorithm is divided into three steps.It uses SNHA algo-rithm to filter out causally related features from a large number of network traffic features and form a"correlation chain".It u-ses the"correlation chain"and network security domain knowledge to assign weights and side constraints to the features.It al-so uses the"correlation chain"and network security domain knowledge,and uses UBayFS algorithm for feature selection to re-duce the feature dimensions and improve the feature quality.GRU recurrent neural network is used to learn and predict the fil-tered features,and realize the network traffic anomaly detection.Experiment results show that the S-UBayFS-GRU algorithm proposed in this paper outperforms other methods in all evaluation indexes.

network traffic anomaly detectionSNHAcorrelation chainUBayFSGRU

王文强、王传合、燕波、孙小杰、刘鹏

展开 >

陕西铁路工程职业技术学院信息化与网络安全处,陕西,渭南 714000

陕西铁路工程职业技术学院陕西省高性能混凝土工程实验室,陕西,渭南 714000

网络异常流量检测 SNHA 关联链 UBayFS GRU

陕西省高职大数据中心建设与运行机制研究项目

23JM009

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(5)