首页|基于深度学习和改进蝗虫优化算法的用户电力数据挖掘

基于深度学习和改进蝗虫优化算法的用户电力数据挖掘

扫码查看
为研究用户用电行为数据挖掘问题,提出一种基于深度学习和改进蝗虫优化算法的用户电力数据挖掘方法.利用皮尔逊相关系数法选取用电行为特征集合,最大限度地降低数据处理维度.设计线性加权KFCM算法,采用改进蝗虫优化算法初始化聚类中心和聚类个数以提升聚类效果.利用改进的KFCM对用户用电行为进行数据挖掘,为电网企业网决策提供数据支撑.仿真实验结果表明,所提方法在聚类效果上有较好的表现.
User Power Data Mining Based on Deep Learning and Improved Grasshopper Optimization Algorithm
The data mining of power consumption characteristics of massive users is studied,and a user power data mining method based on deep learning and improved grasshopper optimization algorithm is proposed.The Pearson correlation coeffi-cient method is used to select the feature set of power consumption behavior to minimize the dimension of data processing.The linear weighted KFCM algorithm is designed,and the grasshopper optimization algorithm is used to initialize the cluster center and the number of clusters,so as to improve the clustering effect.The improved KFCM is used for data mining of users'power consumption behavior to provide data support for power grid enterprise network decision-making.Simulation results show that the proposed method has a good performance in clustering effect.

electricity consumption behaviorcluster analysisgrasshopper optimization algorithmfeature selection

王文、杨少杰、黄建平

展开 >

国网浙江省电力有限公司,浙江,杭州 310007

用电行为 聚类分析 蝗虫优化算法 特征选取

浙江省自然科学基金

21ZJX1203

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(5)