首页|基于卷积神经网络的游泳连续动作检测

基于卷积神经网络的游泳连续动作检测

扫码查看
在许多体育项 目中,分析运动员在比赛中的视频能够清晰了解该运动项 目的技术规律.在游泳运动中,划水效率是教练常用的指标,要求对每一次划水动作进行详细的标记.因此在这里提出了一种利用卷积神经网络自动检测连续视频中的离散事件的方法.该方法学习从帧窗口到平滑一维目标信号上的点的映射,峰值表示一次划水的位置,评估为滑动窗口.证明了提出的方法在野外检测游泳动作的任务中效果良好,并在实验中表明提出的方法能够满足实际需求.
Continuous Swimming Motion Detection Based on Convolutional Neural Network
In many sports,it is useful to analyze video of athletes in action.In swimming,stroke rate is a common metric used by coaches;detailed marking of each stroke is required.Here we propose a method to automatically detect discrete events in continuous video by using convolutional neural networks.The method learns a mapping from frame windows to points on a smoothed one-dimensional target signal,the peak represents the position of a stroke,evaluation is treated as a sliding window.It is demonstrated that the proposed method works well on the task of detecting swimming movements in the wild.And the ex-periments show that the proposed method can meet the actual needs.

swimmingmovement assessmentartificial intelligenceconvolutional neural networksports trainingcontinuous action

宋耀伟、陈星豪、张大千

展开 >

西安体育学院,体育教育学院,陕西,西安 710068

哈尔科夫国立经济大学,国际关系与新闻学院,乌克兰,哈尔科夫洲,61002

游泳 动作评估 人工智能 卷积神经网络 体育训练 连续动作

国家自然科学基金

61440036

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(5)